Dr Oliver Mathematics Mathematics: National Qualifications N5 2018 Paper 1: Non-Calculator 1 hour 15 minutes

The total number of marks available is 46. You must write down all the stages in your working.

1. Evaluate

$$2\frac{1}{3} + \frac{4}{5}. (2)$$

Solution

$$2\frac{1}{3} + \frac{4}{5} = 2 + \frac{5}{15} + \frac{12}{15}$$
$$= 2 + \frac{17}{15}$$
$$= 3\frac{2}{15}.$$

2. Expand and simplify

$$(3x+1)(x-1) + 2(x^2 - 5). (3)$$

$$(3x+1)(x-1) + 2(x^2 - 5) = (3x^2 - 2x - 1) + (2x^2 - 10)$$
$$= \underline{5x^2 - 2x - 11}.$$

3. Solve, algebraically, the system of equations

$$6x - 2y = 5.$$

Solution

$$4x + 5y = -3$$
 (1)
 $6x - 2y = 5$ (2)

$$6x - 2y = 5$$
 (2)

Do $3 \times (1)$ and $2 \times (2)$:

$$12x + 15y = -9 \quad (3)$$

$$12x - 4y = 10$$
 (4)

Subract (3) - (4):

$$19y = -19 \Rightarrow \underline{y = -1}$$

$$\Rightarrow 4x - 5 = -3$$

$$\Rightarrow 4x = 2$$

$$\Rightarrow x = \frac{1}{2}.$$

4. Two vectors are given by

(2)

(3)

$$\mathbf{u} = \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix} \text{ and } \mathbf{u} + \mathbf{v} = \begin{pmatrix} 6 \\ -4 \\ 3 \end{pmatrix}.$$

Find vector \mathbf{v} .

Express your answer in component form.

$\mathbf{v} = (\mathbf{u} + \mathbf{v}) - \mathbf{u}$ $= \begin{pmatrix} 6 \\ -4 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix}$ $= \begin{pmatrix} 5 \\ -9 \\ 2 \end{pmatrix}.$

5. Solve

$$x^2 - 11x + 24 = 0. (2)$$

(2)

Solution

add to:
$$-11$$
 multiply to: $+24$ $\left. -3 \right.$

$$x^{2} - 11x + 24 = 0 \Rightarrow (x - 8)(x - 3) = 0$$
$$\Rightarrow x - 3 = 0 \text{ or } x - 8 = 0$$
$$\Rightarrow \underline{x = 3 \text{ or } x = 8}.$$

6. Part of the graph of

$$y = a\cos bx^{\circ}$$

is shown in the diagram.

State the values of a and b.

Solution

 $\underline{a=5}$ (because of the amplitude) and $\underline{b=4}$ (because there 'four' the graph in there).

7. The cost of a journey with Tom's Taxis depends on the distance travelled. The graph below shows the cost, P pounds, of a journey with Tom's Taxis against the distance travelled, d miles.

Point A represents a journey of 8 miles which costs £14. Point B represents a journey of 12 miles which costs £20.

(a) Find the equation of the line in terms of P and d. Give the equation in its simplest form.

Solution

Gradient =
$$\frac{20 - 14}{12 - 8}$$
$$= \frac{6}{4}$$
$$= \frac{3}{2}$$

and the equation of the line is

$$P - 14 = \frac{3}{2}(d - 8) \Rightarrow P - 14 = \frac{3}{2}d - 12$$

 $\Rightarrow P = \frac{3}{2}d + 2.$

(b) Calculate the cost of a journey of 5 miles.

(3)

Dr Oliver

Solution

$$P = \left(\frac{3}{2} \times 5\right) + 2$$
$$= £9.50.$$

8. Determine the nature of the roots of the function

$$f(x) = 2x^2 + 4x + 5.$$

Solution

a = 2, b = 4, and c = 5:

$$b^{2} - 4ac = 4^{2} - 4 \times 2 \times 5$$

$$= 16 - 40$$

$$= -24$$

$$< 0;$$

hence, there are <u>no real roots</u>.

9. In the diagram shown below, ABCDEFGHJK is a regular decagon.

(2)

(2)

- Angle KLJ is 17° .
- AKL is a straight line.

Dr Oliver Mathematics

Calculate the size of shaded angle KJL.

Solution

$$\angle KOJ = \frac{360}{10} \Rightarrow \angle KOJ = 36^{\circ}$$

$$\Rightarrow \angle JKO = \frac{1}{2}(180 - 36)$$

$$\Rightarrow \angle JKO = \frac{1}{2}(144)$$

$$\Rightarrow \angle JKO = 72^{\circ}.$$

Now,

$$\angle AKJ = \angle KJL + \angle KLJ \Rightarrow 2 \times 72 = \angle KJL + 17$$

 $\Rightarrow \angle KJL = 144 - 17$
 $\Rightarrow \underline{\angle KJL = 127^{\circ}}.$

10. In triangle XYZ:

(2)

- XZ = 10 centimetres,
- YZ = 8 centimetres, and
- $\cos Z = \frac{1}{8}$.

Calculate the length of XY.

Solution

$$XY = \sqrt{XZ^{2} + YZ^{2} - 2 \cdot XZ \cdot YZ \cdot \cos XZY}$$

$$= \sqrt{10^{2} + 8^{2} - 2 \cdot 10 \cdot 8 \cdot \frac{1}{8}}$$

$$= \sqrt{100 + 64 - 20}$$

$$= \sqrt{144}$$

$$= \underline{12 \text{ cm}}.$$

11. Express

 $\frac{9}{\sqrt{6}}$

(2)

with a rational denominator.

Give your answer in its simplest form. $\,$

$$\frac{9}{\sqrt{6}} = \frac{9}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}$$
$$= \frac{9\sqrt{6}}{6}$$
$$= \frac{3\sqrt{6}}{2}.$$

12. Given that

$$\cos 60^{\circ} = 0.5,\tag{1}$$

(2)

state the value of $\cos 240^{\circ}$.

Solution

$$\cos 60^{\circ} = 0.5 \Rightarrow \cos 300^{\circ} = 0.5$$
$$\Rightarrow \underline{\cos 240^{\circ} = -0.5}.$$

13. The diagram shows a triangular prism, ABCDEF, relative to the coordinate axes.

- $\bullet \ AD = AE.$
- DC = 8 units.
- Edges EF, DC, and AB are parallel to the y-axis.

Write down the coordinates of B and C.

Solution

B(4,8,5) and C(6,8,0).

14. 3] Change the subject of the formula

$$y = g\sqrt{x} + h$$

to x.

Solution

$$y = g\sqrt{x} + h \Rightarrow g\sqrt{x} = y - h$$

$$\Rightarrow \sqrt{x} = \frac{y - h}{g}$$

$$\Rightarrow x = \left(\frac{y - h}{g}\right)^{2}.$$

15. Remove the brackets and simplify

$$\left(\frac{2}{3}p^4\right)^2$$
.

(2)

(3)

Solution

$$\left(\frac{2}{3}p^4\right)^2 = \frac{4}{9}p^8.$$

16. Sketch the graph of

$$y = (x-6)(x+4).$$

On your sketch, show clearly the points of intersection with the x-axis and the y-axis, and the coordinates of the turning point.

Dr Oliver

The points of intersection with the x-axis are (-4,0) and (6,0).

The point of intersection with the y-axis is (0, -24).

The turning point is (1, -25).

17. A square based pyramid is shown in the diagram below.

(3)

The square base has length 6 centimetres. The volume is 138 cubic centimetres.

Calculate the height of the pyramid.

Solution

 $\frac{1}{3} \times 6 \times 6 \times \text{height} = 138 \Rightarrow \text{height} = \frac{23}{2}$ $\Rightarrow \underbrace{\text{height}}_{} = 11\frac{1}{2} \text{ cm}.$

18. Express

$$\sin x^{\circ} \cos x^{\circ} \tan x^{\circ}$$

in its simplest form.

Show your working.

Solution

$$\sin x^{\circ} \cos x^{\circ} \tan x^{\circ} = \sin x^{\circ} \cos x^{\circ} \left(\frac{\sin x^{\circ}}{\cos x^{\circ}} \right)$$
$$= \sin^{2} x^{\circ}.$$

19. (a) (i) Express

$$x^2 - 6x - 81$$

(2)

(2)

(1)

in the form

$$(x-p)^2 + q.$$

Solution

$$x^{2} - 6x - 81 = (x^{2} - 6x + 9) - 81 - 9$$
$$= (x - 3)^{2} - 90;$$

hence, $\underline{p=3}$ and $\underline{q=-90}$.

(ii) Hence state the equation of the axis of symmetry of the graph of

$$y = x^2 - 6x - 81.$$

Dr Oliver

Solution

 $\underline{x=3}$.

The roots of the equation

$$x^2 - 6x - 81 = 0$$

can be expressed in the form $x = d \pm d\sqrt{e}$.

(b) Find, algebraically, the values of d and e.

(4)

Solution

$$x^{2} - 6x - 81 = 0 \Rightarrow (x - 3)^{2} - 90 = 0$$

$$\Rightarrow (x - 3)^{2} = 90$$

$$\Rightarrow x - 3 = \pm\sqrt{90}$$

$$\Rightarrow x = 3 \pm\sqrt{9 \times 10}$$

$$\Rightarrow x = 3 \pm(\sqrt{9} \times \sqrt{10})$$

$$\Rightarrow \underline{x} = 3 \pm 3\sqrt{10};$$

hence, d = 3 and e = 10.

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics