Dr Oliver Mathematics
 Worked Examples
 Radius of a Circle 2

From: LoveMath., 20 April 2023

1. A square, with side length $x \mathrm{~cm}$, is drawn.

A circle, with radius $r \mathrm{~cm}$ is drawn as follows: the circle is tangent to the bottom and left sides of the square and passes through its top-right corner, as shown in Figure 2.

Figure 1: a square and a circle

Find the length of the radius of the circle.

Solution

Let O be the centre of the circle. We add in the new dimensions:

Figure 2: with the dimension added on

Pythagoras' Theorem:

$$
\begin{aligned}
(x-r)^{2}+(x-r)^{2}=r^{2} & \Rightarrow 2(x-r)^{2}=r^{2} \\
& \Rightarrow 2\left(x^{2}-2 r x+r^{2}\right)=r^{2} \\
& \Rightarrow 2 x^{2}-4 r x+2 r^{2}=r^{2} \\
& \Rightarrow 2 x^{2}-4 r x+r^{2}=0 \\
& \Rightarrow r^{2}-4 r x=-2 x^{2} \\
& \Rightarrow r^{2}-4 r x+(2 x)^{2}=-2 x^{2}+(2 x)^{2} \\
& \Rightarrow(r-2 x)^{2}=-2 x^{2}+4 x^{2} \\
& \Rightarrow(r-2 x)^{2}=2 x^{2} \\
& \Rightarrow r-2 x= \pm x \sqrt{2} \\
& \Rightarrow r=2 x \pm x \sqrt{2} \\
& \Rightarrow r=(2 \pm \sqrt{2}) x .
\end{aligned}
$$

$r=(2+\sqrt{2}) x$? Look at picture: $(x-r)$ is a length which means it is bigger than zero:

$$
x-r>0 \Rightarrow x>r .
$$

So $r \neq(2+\sqrt{2}) x$. Hence, we need the other solution:

$$
\underline{\underline{r=(2-\sqrt{2}) x}}
$$

