Dr Oliver Mathematics Mathematics: Higher 2025 Paper 1: Non-Calculator 1 hour 15 minutes

The total number of marks available is 55.

You must write down all the stages in your working.

1. A curve has equation

$$y = x^3 - 2x^2 + 5.$$

(4)

(4)

Find the equation of the tangent to this curve at the point where x=2.

Solution

Well,

$$x = 2 \Rightarrow y = 8 - 8 + 5 = 5$$

so the point is (2,5).

Now

$$y = x^3 - 2x^2 + 5 \Rightarrow \frac{dy}{dx} = 3x^2 - 4x$$

and

$$x = 2 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 12 - 8$$
$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 4.$$

Finally, the equation of the tangent is

$$y - 5 = 4(x - 2) \Rightarrow y - 5 = 4x - 8$$
$$\Rightarrow \underline{y = 4x - 3}.$$

2. Find the equation of the perpendicular bisector of the line joining A(1,4) and B(9,10).

Solution

The midpoint — call it C — is

$$\left(\frac{1+9}{2}, \frac{4+10}{2}\right) = C(5,7).$$

Now,

$$m_{AB} = \frac{10 - 4}{9 - 1}$$

$$= \frac{6}{8}$$

$$= \frac{3}{4},$$

which means

$$m_{\text{normal}} = -\frac{4}{3}$$
.

Finally, the equation of the perpendicular bisector is

$$y-7 = -\frac{4}{3}(x-5) \Rightarrow y-7 = -\frac{4}{3}x + \frac{20}{3}$$

 $\Rightarrow y = -\frac{4}{3}x + \frac{41}{3}.$

3. Find

$$\int \left(\frac{12}{x^2} + x^{\frac{1}{2}}\right) \, \mathrm{d}x, \, x > 0. \tag{4}$$

Solution

Well,

$$\int \left(\frac{12}{x^2} + x^{\frac{1}{2}}\right) dx = \int \left(12x^{-2} + x^{\frac{1}{2}}\right) dx$$
$$= \underbrace{-12x^{-1} + \frac{2}{3}x^{\frac{3}{2}} + c}.$$

4. Evaluate

$$3\log_3 2 + \log_3 \frac{1}{24}. (3)$$

Solution

Now,

$$3\log_3 2 + \log_3 \frac{1}{24} = \log_3 2^3 + \log_3 \frac{1}{24}$$

$$= \log_3 8 + \log_3 \frac{1}{24}$$

$$= \log_3 (8 \times \frac{1}{24})$$

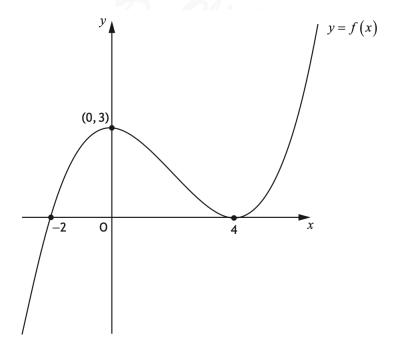
$$= \log_3 (\frac{1}{3})$$

$$= \log_3 (3^{-1})$$

$$= -\log_3 3$$

$$= -1.$$

5. The diagram shows the graph of y = f(x), with stationary points at (0,3) and (4,0).



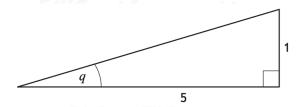
Sketch the graph of

$$y = f(-x) + 3.$$

Solution

It goes through (-4,3), (0,6), and (2,3) and has a <u>down-up-down</u> shape.

6. The diagram shows a right-angled triangle with angle q.



- (a) Determine the value of
 - (i) $\sin 2q$,

(3)

Solution

Well,

$$hyp^{2} = opp^{2} + adj^{2} \Rightarrow hyp^{2} = 1^{2} + 5^{2}$$
$$\Rightarrow hyp^{2} = 1 + 25$$
$$\Rightarrow hyp^{2} = 26$$
$$\Rightarrow hyp = \sqrt{26}.$$

Now,

$$\sin 2q = 2 \sin q \cos q$$

$$= 2 \times \frac{1}{\sqrt{26}} \times \frac{5}{\sqrt{26}}$$

$$= \frac{10}{26}$$

$$= \frac{5}{13}.$$

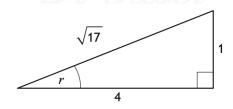
(ii) $\cos 2q$.

(1)

Solution

Well, $\cos 2q = 2\cos^2 q - 1$ $= 2 \cdot [\cos q]^2 - 1$ $= 2 \cdot \left[\frac{5}{\sqrt{26}}\right]^2 - 1$ $= 2 \cdot \left[\frac{25}{26}\right] - 1$ $= \frac{50}{26} - 1$ $= \frac{25}{13} - 1$ $= \frac{12}{13}$

A second right-angled triangle has angle r as shown.



(3)

(b) Find the value of $\sin(2q - r)$.

Solution

Well,

$$\sin(2q - r) = \sin(2q)\cos r - \cos(2q)\sin r$$

$$= \left(\frac{5}{13}\right)\left(\frac{4}{\sqrt{17}}\right) - \left(\frac{12}{13}\right)\left(\frac{1}{\sqrt{17}}\right)$$

$$= \frac{20}{13\sqrt{17}} - \frac{12}{13\sqrt{17}}$$

$$= \frac{8}{13\sqrt{17}}$$

$$= \frac{8}{13\sqrt{17}} \times \frac{\sqrt{17}}{\sqrt{17}}$$

$$= \frac{8\sqrt{17}}{13\times17}$$

$$= \frac{8\sqrt{17}}{221},$$

using the trick of

$$13 \times 17 = (15 - 2)(15 + 2)$$
$$= 15^{2} - 2^{2}$$
$$= 225 - 4$$
$$= 221.$$

7. (a) Show that (x + 3) is a factor of

$$5x^3 + 16x^2 - x - 12.$$

(2)

(3)

Solution

We use synthetic division:

As their is no remainder, (x + 3) is a <u>factor</u> of the cubic.

(b) Hence, or otherwise, solve

$$5x^3 + 16x^2 - x - 12 = 0.$$

Solution

Now,

$$5x^3 + 16x^2 - x - 12 = 0 \Rightarrow (x+3)(5x^2 + x - 4) = 0$$

add to:
$$+1$$

multiply to: $(+5) \times (-4) = -20$ $\} + 5, -4$
e.g.,

$$\Rightarrow (x+3)[5x^2 + 5x - 4x - 4] = 0$$

$$\Rightarrow (x+3)[5x(x+1) - 4(x+1)] = 0$$

$$\Rightarrow (x+3)(5x-4)(x+1) = 0$$

$$\Rightarrow x+3 = 0, 5x-4 = 0, \text{ or } x+1 = 0$$

$$\Rightarrow x = -3, x = \frac{4}{5}, \text{ or } x = -1.$$

8. Given that

$$\log_a 75 = 2 + \log_a 3, \ a > 0,$$

(3)

(4)

find the value of a.

Solution

Well,

$$\begin{split} \log_a 75 &= 2 + \log_a 3 \Rightarrow \log_a 75 - \log_a 3 = 2 \\ &\Rightarrow \log_a \left(\frac{75}{3}\right) = 2 \\ &\Rightarrow \log_a 25 = 2 \\ &\Rightarrow a^2 = 25 \\ &\Rightarrow \underline{a = 5}, \end{split}$$

because a > 0.

9. Find the coordinates of the points of intersection of the line with equation

$$y = x + 1$$

and the circle with equation

$$x^2 + y^2 - 2x + 6y - 15 = 0.$$

Solution

Well,

$$\begin{array}{c|cccc} \times & x & +1 \\ \hline x & x^2 & +x \\ +1 & +x & +1 \\ \hline \end{array}$$

and so

$$x^{2} + y^{2} - 2x + 6y - 15 = 0$$

$$\Rightarrow x^{2} + (x+1)^{2} - 2x + 6(x+1) - 15 = 0$$

$$\Rightarrow x^{2} + (x^{2} + 2x + 1) - 2x + 6x + 6 - 15 = 0$$

$$\Rightarrow 2x^{2} + 6x - 8 = 0$$

$$\Rightarrow 2(x^{2} + 3x - 4) = 0$$

add to:
$$+3$$
 multiply to: -4 $+4$, -1

$$\Rightarrow 2(x+4)(x-1) = 0$$

$$\Rightarrow x+4 = 0 \text{ or } x-1 = 0$$

$$\Rightarrow x = -4 \text{ or } x = 1$$

$$\Rightarrow y = -3 \text{ or } y = 2;$$

hence, the coordinates are (-4, -3) and (1, 2).

10. The vectors \mathbf{u} and \mathbf{v} are such that

•
$$\mathbf{u} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
,

•
$$\mathbf{v} = \begin{pmatrix} 1 \\ 3 \\ k \end{pmatrix}$$
, and

• the angle between ${\bf u}$ and ${\bf v}$ is 45° .

Find the value of k, where k > 0.

Solution

Well,

$$\mathbf{u}.\mathbf{v} = (1)(1) + (1)(3) + (0)(k)$$

= 4.

Now,

$$|\mathbf{u}| = \sqrt{1^2 + 1^2 + 0^2}$$

= $\sqrt{2}$

and

$$|\mathbf{v}| = \sqrt{1^2 + 3^2 + k^2}$$
$$= \sqrt{k^2 + 10}.$$

Next,

$$\mathbf{u}.\mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos 45^{\circ}$$

$$\Rightarrow 4 = \sqrt{2} \times \sqrt{k^2 + 10} \times \frac{1}{\sqrt{2}}$$

$$\Rightarrow \sqrt{k^2 + 10} = 4$$

$$\Rightarrow k^2 + 10 = 16$$

$$\Rightarrow k^2 = 6$$

$$\Rightarrow \underline{k} = \sqrt{6},$$

as k > 0.

11. The equation

$$9x^2 + 3kx + k = 0 \tag{4}$$

has two real and distinct roots.

Determine the range of values for k.

Justify your answer.

Solution

Well,

$$b^{2} - 4ac > 0 \Rightarrow (3k)^{2} - 4(9)(k) > 0$$
$$\Rightarrow 9k^{2} - 36k > 0$$
$$\Rightarrow 9k(k - 4) > 0.$$

We need a 'table of signs':

	k < 0	k = 0	0 < k < 4	k = 4	k > 0
\overline{k}	120	0	4700	+	+
(k-4)	_	_	_	0	+
k(k-4)	+	0	_	0	+

Hence,

$$\underline{k < 0 \text{ or } k > 4}$$
.

12. Given that (4)

- $\frac{dy}{dx} = 6\cos x + 8\sin 2x$ and y = 4 when $x = \frac{1}{6}\pi$,

express y in terms of x.

Solution

Well,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 6\cos x + 8\sin 2x \Rightarrow y = 6\sin x - 4\cos 2x + c,$$

for some constant c. Now,

$$x = \frac{1}{6}\pi, y = 4 \Rightarrow 4 = 6\sin\frac{1}{6}\pi - 4\cos\frac{1}{3}\pi + c$$
$$\Rightarrow 4 = 3 - 2 + c$$
$$\Rightarrow c = 3;$$

hence,

$$y = 6\sin x - 4\cos 2x + 3.$$

13. A function, f, is defined on the set of real numbers.

The derivative of f is

$$f'(x) = (x+5)(2-x).$$

(a) Find the x-coordinates of the stationary points on the curve with equation y = f(x) and determine their nature.

Solution

Well,

$$\begin{array}{c|cccc} \times & x & +5 \\ \hline 2 & 2x & +10 \\ -x & -x^2 & -5x \end{array}$$

and

$$f'(x) = -x^2 - 3x + 10 \Rightarrow f''(x) = -2x - 3.$$

Now,

$$f'(x) = 0 \Rightarrow (x+5)(2-x) = 0$$
$$\Rightarrow x+5 = 0 \text{ or } 2-x = 0$$
$$\Rightarrow x = -5 \text{ or } x = 2.$$

Next,

$$x = -5 \Rightarrow f''(x) = 7 > 0$$

and

$$x = 2 \Rightarrow f''(x) = -7 < 0.$$

Hence, the stationary point at $\underline{x=-5}$ is a minimum turning point and the stationary point at $\underline{x=2}$ is a maximum turning point.

It is known that

- f is a cubic function.
- f(0) < 0.
- The equation f(x) = 0 has exactly one solution. The solution lies between -10 and 10.

(3)

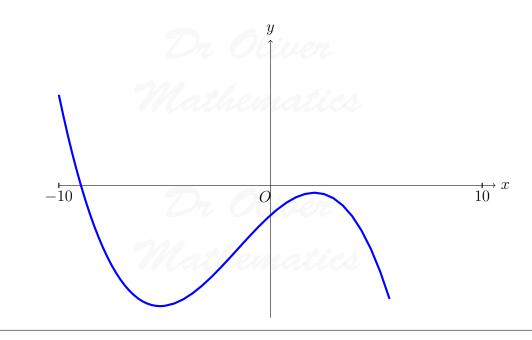
(b) Draw a sketch of a possible graph of y = f(x).

Solution

Now,

$$f'(x) = -x^2 - 3x + 10 \Rightarrow f(x) = -\frac{1}{3}x^3 - \frac{3}{2}x^2 + 10x + c,$$

for some constant c. So a graph looks like this:



Mathematics