Dr Oliver Mathematics Mathematics: Higher 2009 Paper 1: Non-Calculator 1 hour 30 minutes

The total number of marks available is 70. You must write down all the stages in your working.

Section A

1. A sequence is defined by

$$u_{n+1} = 3u_n + 4$$

(2)

(2)

with $u_1 = 2$.

What is the value of u_3 ?

- A. 34
- B. 21
- C. 18
- D. 13

Solution

 \mathbf{A}

$$u_2 = 3u_1 + 4 = 3 \times 2 + 4 = 10$$

 $u_3 = 3u_2 + 4 = 3 \times 10 + 4 = 34$.

2. A circle has equation

$$x^2 + y^2 + 8x + 6y - 75 = 0.$$

What is the radius of this circle?

- A. 5
- B. 10
- C. $\sqrt{75}$
- D. $\sqrt{175}$

Solution

 \mathbf{B}

$$x^{2} + y^{2} + 8x + 6y - 75 = 0 \Rightarrow x^{2} + 8x + y^{2} + 6y = 75$$
$$\Rightarrow (x^{2} + 8x + 16) + (y^{2} + 6y + 9) = 75 + 16 + 9$$
$$\Rightarrow (x + 4)^{2} + (y + 3)^{2} = 100$$
$$\Rightarrow (x + 4)^{2} + (y + 3)^{2} = 10^{2}.$$

3. Triangle PQR has vertices at P(-3, -2), Q(-1, 4), and R(3, 6). (2) PS is a median.

What is the gradient of PS?

- A. -2
- B. $-\frac{7}{4}$
- C. 1
- D. $\frac{7}{4}$

Solution

D

S(1,5) and the gradient of PS is

$$\frac{5 - (-2)}{1 - (-3)} = \frac{7}{4}.$$

4. A curve has equation

$$y = 5x^3 - 12x.$$

(2)

What is the gradient of the tangent at the point (1, -7)?

- A. -7
- B. -5
- C. 3
- D. 5

 \mathbf{C}

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 15x^2 - 12$$

and

$$x = 1 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 3.$$

(2)

(2)

- 5. Here are two statements about the points S(2,3) and T(5,-1):
 - (1) The length of ST = 5 units;
 - (2) The gradient of $ST = \frac{4}{3}$.

Which of the following is true?

- A. Neither statement is correct.
- B. Only statement (1) is correct.
- C. Only statement (2) is correct.
- D. Both statements are correct.

Solution

В

$$ST = \sqrt{3^2 + 4^2} = 5$$

and

gradient =
$$\frac{3 - (-1)}{2 - 5} = -\frac{4}{3}$$
.

6. A sequence is generated by the recurrence relation

$$u_{n+1} = 0.7u_n + 10.$$

What is the limit of this sequence as $n \to \infty$?

A.
$$\frac{100}{3}$$

B.
$$\frac{100}{7}$$

C.
$$\frac{17}{100}$$

D.
$$\frac{3}{10}$$

Α

Let u be the number that they are converging to. Now,

$$u = 0.7u + 10 \Rightarrow 0.3u = 10$$

$$\Rightarrow u = \frac{100}{3}.$$

(2)

(2)

- 7. If the exact value of $\cos x$ is $\frac{1}{\sqrt{5}}$, find the exact value of $\cos 2x$.
 - A. $-\frac{3}{5}$
 - B. $-\frac{2}{\sqrt{5}}$
 - C. $-\frac{2}{\sqrt{5}}$
 - D. $\frac{3}{5}$

Solution

\mathbf{A}

$$\cos 2x = 2\cos^2 x - 1$$

$$= 2\left(\frac{1}{\sqrt{5}}\right)^2 x - 1$$

$$= \frac{2}{5} - 1$$

$$= -\frac{3}{5}.$$

8. What is the derivative of

$$\frac{1}{4x^3}, \ x \neq 0?$$

- A. $\frac{1}{12x^2}$
- B. $-\frac{1}{12x^2}$
- C. $\frac{4}{x^4}$
- D. $-\frac{3}{4x^4}$

Solution

 \mathbf{D}

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{4x^3} \right) = \frac{1}{4} \frac{\mathrm{d}}{\mathrm{d}x} \left(x^{-3} \right)$$
$$= \frac{1}{4} \times (-3x^{-4})$$
$$= -\frac{3}{4x^4}.$$

9. The line with equation

$$y = 2x$$

(2)

(2)

intersects the circle with equation

$$x^2 + y^2 = 5$$

at the points J and K.

What are the x-coordinates of J and K?

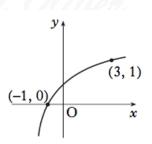
A.
$$x_J = 1, x_K = -1$$

B.
$$x_J = 2, x_K = -2$$

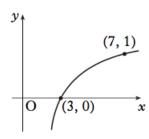
C.
$$x_J = 1, x_K = -2$$

D.
$$x_J = -1, x_K = 2$$

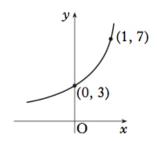
Solution

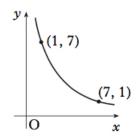

 \mathbf{A}

$$x^{2} + y^{2} = 5 \Rightarrow x^{2} + (2x)^{2} = 5$$
$$\Rightarrow 5x^{2} = 5$$
$$\Rightarrow x^{2} = 1$$
$$\Rightarrow x = \pm 1$$


10. Which of the following graphs has equation

$$y = \log_5(x-2)?$$


A


В

C

D

Ur Ulluer

Solution

В

11. How many solutions does the equation

$$(4\sin x - \sqrt{5})(\sin x + 1) = 0$$

have in the interval $0 \le x < 2\pi$?

(2)

- A. 4
- B. 3
- C. 2
- D. 1

 \mathbf{B}

$$(4\sin x - \sqrt{5})(\sin x + 1) = 0 \Rightarrow \sin x = \frac{\sqrt{5}}{4} \text{ or } \sin x = -1$$

and the are 3 solutions (2 solutions for $\sin x = \frac{\sqrt{5}}{4}$ and one for $\sin x = -1$).

12. A function f is given by

$$f(x) = 2x^2 - x - 9.$$

(2)

(2)

Which of the following describes the nature of the roots of f(x) = 0?

- A. No real roots
- B. Equal roots
- C. Real distinct roots
- D. Rational distinct roots

Solution

 \mathbf{C}

$$b^{2} - 4ac = (-1)^{2} - 4 \times 2 \times (-9)$$
$$= 73.$$

13. k and a are given by

$$k\sin a^{\circ} = 1,$$
$$k\cos a^{\circ} = \sqrt{3},$$

where k > 0 and $0 \le a < 90$.

What are the values of k and a?

A.
$$k = 2$$
 and $a = 60$

B.
$$k = 2 \text{ and } a = 30$$

C.
$$k = \sqrt{10} \text{ and } a = 60$$

D.
$$k = \sqrt{10} \text{ and } a = 30$$

 \mathbf{B}

$$k = \sqrt{1^2 + (\sqrt{3})^2} = 2$$

and

$$a = \tan^{-1} \frac{1}{\sqrt{3}} = 30.$$

14. If

$$f(x) = 2\sin\left(3x - \frac{\pi}{2}\right) + 5,$$

(2)

(2)

what is the range of values of f(x)?

A.
$$-1 \le f(x) \le 11$$

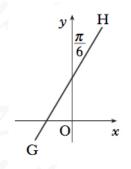
B.
$$2 \le f(x) \le 8$$

C.
$$3 \leqslant f(x) \leqslant 7$$

D.
$$-3 \leqslant f(x) \leqslant 7$$

Solution

 \mathbf{C}


The minimum is

$$2 \times (-1) + 5 = 3$$

and the maximum is

$$2 \times 1 + 5 = 7.$$

15. The line GH makes an angle of $\frac{\pi}{6}$ radians with the y-axis, as shown in the diagram.

What is the gradient of GH?

- A. $\sqrt{3}$
- B. $\frac{1}{2}$
- C. $\frac{1}{\sqrt{2}}$
- D. $\frac{\sqrt{3}}{2}$

Solution

 \mathbf{A}

$$\pi - \frac{\pi}{2} - \frac{\pi}{6} = \frac{\pi}{3}$$

and

$$\tan^{-1}\frac{\pi}{3} = \sqrt{3}.$$

16. The graph of

$$y = 4x^3 - 9x^2$$

(2)

is shown in the diagram.

Which of the following gives the area of the shaded section?

A.
$$[x^4 - 3x^3]_{x=-5}^0$$

B.
$$-[x^4 - 3x^3]_{x=0}^1$$

C.
$$[12x^2 - 18x]_{x=-5}^0$$

D.
$$-[12x^2 - 18x]_{x=0}^1$$

Dr Oliver Mathematics

Solution

 \mathbf{B}

$$\int_0^1 (4x^3 - 9x^2) \, \mathrm{d}x = \left[x^4 - 3x^3 \right]_{x=0}^1$$

and we want to take it away (why?)

17. The vector \mathbf{u} has components

 $\begin{pmatrix} -3 \\ 0 \\ 4 \end{pmatrix}$.

Which of the following is a unit vector parallel to \mathbf{u} ?

A.
$$-\frac{3}{5}i + \frac{4}{5}k$$

B.
$$-3i + 4k$$

C.
$$-\frac{3}{\sqrt{7}}\mathbf{i} + \frac{4}{\sqrt{7}}\mathbf{k}$$

D.
$$-\frac{1}{3}i + \frac{1}{4}k$$

Solution

 \mathbf{A}

$$|\mathbf{u}| = \sqrt{3^2 + 0 + 4^2} = 5.$$

18. Given that

 $f(x) = (4 - 3x^2)^{-\frac{1}{2}}$ (2)

(2)

on a suitable domain, find f'(x).

A.
$$-3x(4-3x^2)^{-\frac{1}{2}}$$

B.
$$-\frac{1}{2}(4-3x^2)^{-\frac{3}{2}}$$

C.
$$2(4-3x^3)^{\frac{1}{2}}$$

D.
$$3x(4-3x^2)^{-\frac{3}{2}}$$

 \mathbf{D}

$$f'(x) = -\frac{1}{2}(4 - 3x^2)^{-\frac{3}{2}} \times (-6x)$$
$$= 3x(4 - 3x^2)^{-\frac{3}{2}}.$$

19. For what values of x is

$$6 + x - x^2 < 0? (2)$$

A.
$$x > 3$$
 only

B.
$$x < -2$$
 only

C.
$$x < -2 \text{ or } x > 3$$

D.
$$-3 < x < 2$$

Solution

 \mathbf{C}

$$6 + x - x^2 = 0 \Rightarrow (2 - x)(3 + x) = 0$$

 $\Rightarrow x = -3 \text{ or } x = 2$

and we want the x-values when it is negative.

$$A = 2\pi r^2 + 6\pi r. \tag{2}$$

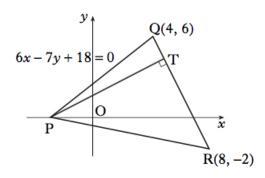
What is the rate of change of A with respect to r when r = 2?

A.
$$10\pi$$

B.
$$12\pi$$

C.
$$14\pi$$

D.
$$20\pi$$


Solution

 \mathbf{C}

$$\frac{\mathrm{d}A}{\mathrm{d}r}\Big|_{r=2} = 4\pi r + 6\pi\Big|_{r=2} = 14\pi.$$

Section B

21. Triangle PQR has vertex P on the x-axis, as shown in the diagram.

Q and R are the points (4,6) and (8,-2) respectively. The equation of PQ is

$$6x - 7y + 18 = 0.$$

(a) State the coordinates of P.

Solution

$$y = 0 \Rightarrow 6x + 18 = 0$$
$$\Rightarrow 6x = -18$$
$$\Rightarrow x = -3;$$

(1)

(3)

hence, P(-3, 0).

(b) Find the equation of the altitude of the triangle from P.

Solution

$$m_{QR} = \frac{6 - (-2)}{4 - 8}$$
$$= \frac{8}{-4}$$
$$= -2$$

and the gradient of PT is $\frac{1}{2}$. Finally, the equation is

$$y - 0 = \frac{1}{2}(x+3) \Rightarrow y = \frac{1}{2}x + \frac{3}{2}.$$

The altitude from P meets the line QR at T.

(c) Find the coordinates of T.

(4)

Solution

The equation of QR is

$$y - 6 = -2(x - 4) \Rightarrow y = -2x + 14$$

and now intersect:

$$-2x + 14 = \frac{1}{2}x + \frac{3}{2} \Rightarrow \frac{5}{2}x = \frac{25}{2}$$
$$\Rightarrow x = 5$$
$$\Rightarrow y = 4;$$

hence, T(5,4).

22. D, E, and F have coordinates (10, -8, -15), (1, -2, -3), and (-2, 0, 1). respectively.

(a) (i) Show that D, E, and F are collinear.

(4)

Solution

$$\overrightarrow{DE} = \begin{pmatrix} 9 \\ -6 \\ -12 \end{pmatrix}$$

and

$$\overrightarrow{DF} = \begin{pmatrix} 12 \\ -8 \\ -16 \end{pmatrix}$$
$$= \frac{4}{3} \begin{pmatrix} 9 \\ -6 \\ -12 \end{pmatrix}$$
$$= \frac{4}{3} \overrightarrow{DE};$$

hence, D, E, and F are collinear.

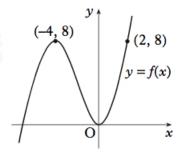
(ii) Find the ratio in which E divides DF.

Solution

<u>3 : 1</u>.

G has coordinates (k, 1, 0).

(b) Given that DE is perpendicular to GE, find the value of k.


(4)

Solution

Given that DE is perpendicular to GE,

$$\begin{pmatrix} 9 \\ -6 \\ -12 \end{pmatrix} \cdot \begin{pmatrix} k-1 \\ 3 \\ 3 \end{pmatrix} = 0 \Rightarrow 9(k-1) - 18 - 36 = 0$$
$$\Rightarrow 9(k-1) = 54$$
$$\Rightarrow k-1 = 6$$
$$\Rightarrow k = 7.$$

23. The diagram shows a sketch of the function y = f(x).

(a) Copy the diagram and on it sketch the graph of y = f(2x).

(2)

Solution

E.g., it goes through (-2, 8), (0, 0), and (1, 8).

(b) On a separate diagram, sketch the graph of y = 1 - f(2x).

(3)

Solution

E.g., it goes through (-2, -7), (0, 1), and (1, -7).

24. (a) Using the fact that

(3)

$$\frac{7\pi}{12} = \frac{\pi}{3} + \frac{\pi}{4},$$

find the exact value of $\sin\left(\frac{7\pi}{12}\right)$.

1 4.

Solution

$$\sin\left(\frac{7\pi}{12}\right) = \sin\left(\frac{\pi}{3} + \frac{\pi}{4}\right)$$

$$= \sin\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{3}\right)$$

$$= \left(\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}\right) + \left(\frac{\sqrt{2}}{2} \times \frac{1}{2}\right)$$

$$= \frac{\sqrt{6} + \sqrt{2}}{4}.$$

(b) Show that

 $\sin(A+B) + \sin(A-B) = 2\sin A \cos B.$

(2)

(4)

Solution

$$\sin(A + B) + \sin(A - B) = (\sin A \cos B + \sin B \cos A)$$
$$+ (\sin A \cos B - \sin B \cos A)$$
$$= 2\sin A \cos B,$$

as required.

(c) (i) Express $\frac{\pi}{12}$ in terms of $\frac{\pi}{3}$ and $\frac{\pi}{4}$.

Solution

$$\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}.$$

(ii) Hence or otherwise find the exact value of

$$\sin\left(\frac{7\pi}{12}\right) + \sin\left(\frac{\pi}{12}\right).$$

Solution

$$\sin\left(\frac{7\pi}{12}\right) + \sin\left(\frac{\pi}{12}\right) = 2\sin\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{4}\right)$$
$$= 2 \times \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}$$
$$= \frac{\sqrt{6}}{2}.$$

Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics