Dr Oliver Mathematics AQA Further Maths Level 2
 June 2019 Paper 2
 2 hours

The total number of marks available is 105 .
You must write down all the stages in your working.
You are permitted to use a scientific or graphical calculator in this paper.

1. (a)

$$
a\binom{3}{5}=4\binom{2 a+3}{b} .
$$

Work out the values of a and b.
(b)

$$
\left(\begin{array}{cc}
m & -1 \tag{2}\\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 2 \\
-2 & -1
\end{array}\right)=\mathbf{I}
$$

where \mathbf{I} is the identity matrix.
Work out the value of m.
2. Here is a sketch of quadrilateral $P Q R S$.
M is the midpoint of $P S$.

Use gradients to show that $M R$ is parallel to $P Q$.
3.

$$
\begin{equation*}
-2<a<0 \text { and }-1<b<1 . \tag{4}
\end{equation*}
$$

Tick the correct box for each statement.

	Always true	Sometimes true	Never true
$a^{2}<0$			
$-1<b^{3}<1$			
$\frac{b}{a}<0$			
$a-b>0$			

4. P is a point on a curve.

The curve has gradient function

$$
\frac{x^{5}-17}{10}
$$

The tangent to the curve at P is parallel to the line

$$
3 x-2 y=9
$$

Work out the x-coordinate of P.
5. (a) Write

$$
\begin{equation*}
\sqrt[4]{a \times a^{-9}} \tag{2}
\end{equation*}
$$

as an integer power of a.
(b) Simplify fully

$$
\begin{equation*}
\frac{\left(4 c d^{2}\right)^{3}}{2 c d^{4}} \tag{3}
\end{equation*}
$$

6. Here is a sketch of the curve

$$
y=(2 x+3)(x-2)
$$

The curve intersects the x-axis at A and B.
(a) Complete the coordinates of A and B.

$$
\begin{equation*}
A(\quad, 0) \quad B(\quad, 0) \tag{2}
\end{equation*}
$$

(b) Write down the range of values for x for which

$$
\begin{equation*}
(2 x+3)(x-2)<0 . \tag{1}
\end{equation*}
$$

7. (a) On the grid, sketch a graph for which
the rate of change of y with respect to x is always zero.

(b) On the grid, sketch a graph for which
the rate of change of y with respect to x is always a positive constant.

8. (a) A linear sequence has first term

$$
\begin{equation*}
7+12 \sqrt{5} \tag{2}
\end{equation*}
$$

The term-to-term rule is

$$
\text { add } 9-2 \sqrt{5}
$$

One term of the sequence is an integer.
Work out the value of this integer.
(b) The nth term of a different sequence is

$$
\begin{equation*}
\frac{3 n^{2}-1}{n^{2}+1} \tag{2}
\end{equation*}
$$

Work out the sum of the first three terms.
(c) The first four terms of a quadratic sequence are

$$
\begin{array}{llll}
-3 & 3 & 13 & 27 . \tag{3}
\end{array}
$$

Work out an expression for the nth term.
9. Factorise fully

$$
\begin{equation*}
(p+6)^{11}-(p+6)^{10} \tag{2}
\end{equation*}
$$

10. (a)

The domain of $\mathrm{f}(x)$ is $x \leqslant 3$.
Work out the range of $\mathrm{f}(x)$.
(b)

$$
\begin{equation*}
\mathrm{g}(x)=5-x^{2} \tag{2}
\end{equation*}
$$

The domain of $\mathrm{g}(x)$ is $-2 \leqslant x \leqslant 1$.
Work out the range of $\mathrm{g}(x)$.
11. Here is a sketch of a quadratic curve which has a maximum point at $(-2,5)$.

Not drawn

 accuratelyWhat is the equation of the normal to the curve at the maximum point?
Circle your answer.

$$
\begin{equation*}
x=-2 \quad y=5 \quad x=5 \quad y=-2 \tag{3}
\end{equation*}
$$

12. The diagram shows a solid hemisphere.

- The diameter is $12 a \mathrm{~cm}$.
- The volume is $486 \pi \mathrm{~cm}^{3}$.

Work out the value of a.
13. Simplify fully

$$
\begin{equation*}
\frac{x-x^{3}}{2 x+2 x^{2}} \tag{4}
\end{equation*}
$$

You must show your working.
14. Here is a triangle.

Use the cosine rule to work out the ratio

$$
b^{2}: a^{2}
$$

15. Rearrange

$$
\begin{equation*}
m=\frac{2 p+1}{p}+\frac{p+5}{3 p} \tag{4}
\end{equation*}
$$

to make p the subject.
16. The curve

$$
\begin{equation*}
y=2 \sqrt{x-a}+5 \tag{3}
\end{equation*}
$$

passes through the point $(1,8)$
Work out the value of a. \qquad
17. Show that

$$
\begin{equation*}
(x+1)(x+3)(x+4)-x\left(x^{2}+7 x+11\right) \tag{5}
\end{equation*}
$$

can be written in the form

$$
(x+a)(x+b),
$$

where a and b are positive integers.
18. Solve
where k is a constant.
Give your answers in their simplest form in terms of k.
19. - $A B C$ is a right-angled triangle.

- $A C D$ is an isosceles triangle.
- All dimensions are in centimetres.

Not drawn accurately
(a) Show that $A C=5 x$.
(b) Work out an expression, in cm^{2}, for the area of quadrilateral $A B C D$.

Give your answer in the form $p x^{2}$, where p is an integer.
20. - A, B, C, and D are points on a circle.

- D, E, and F are points on a different circle, centre C.
- $D C E, A D F$, and $B C F$ are straight lines.
- Angle $D E F=x$.

(a) Prove that

$$
\begin{equation*}
\text { angle } B A D=2 x \text {. } \tag{3}
\end{equation*}
$$

(b) In the case when $A B$ is parallel to $D E$, work out the size of angle x.
21. $A B C D E F G H$ is a cuboid.

- $B C=15 \mathrm{~cm}$.
- $C D=12 \mathrm{~cm}$.
- $D H=8 \mathrm{~cm}$.

Work out the size of the angle between the line $C E$ and the plane $C D H G$.
22. (a) Show that

$$
\begin{equation*}
\frac{2 \sin ^{2} x-1+\cos ^{2} x}{\sin x \cos x} \tag{3}
\end{equation*}
$$

is equivalent to $\tan x$.
(b) Hence solve

$$
\frac{2 \sin ^{2} x-1+\cos ^{2} x}{\sin x \cos x}=-1
$$

for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
23. A circle has centre C and equation

$$
(x-1)^{2}+(y+3)^{2}=25
$$

$P(4,-7)$ and Q are points on the circle.

- The tangent at Q is parallel to the x-axis.
- The tangents at P and Q intersect at point R.

Not drawn accurately
(a) Write down the coordinates of C.
(b) Show that the equation of the tangent at Q is

$$
\begin{equation*}
y=2 . \tag{1}
\end{equation*}
$$

(c) Work out the x-coordinate of R.
24. Show that the curve
has exactly two stationary points.
25.

$$
\mathrm{f}(x)=x^{3}-10 x-c, \text { where } c \text { is a positive integer. }
$$

$(x+c)$ is a factor of $\mathrm{f}(x)$.
Use the factor theorem to work out the value of c.
26. $\mathrm{f}(x)$ is a function with domain all values of x.

$$
\begin{equation*}
\mathrm{f}(x)=x^{2}+6 x-a, \text { where } a \text { is a constant. } \tag{4}
\end{equation*}
$$

Work out the possible values of a.
Give your answer as an inequality.
27. The curve $y=\mathrm{f}(x)$ has

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=(x+2)^{6}+(x+2)^{4} . \tag{3}
\end{equation*}
$$

The curve has exactly one stationary point at P where $x=-2$.
Use the expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to show that P is a point of inflection.
Zre Olicer

