Dr Oliver Mathematics Mathematics: National Qualifications N5 2025 Paper 2: Calculator 1 hour 30 minutes

The total number of marks available is 50.

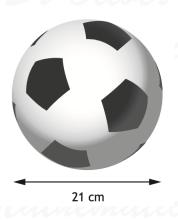
To earn full marks you must show your working in your answers.

1. The number of visitors to a zoo in 2024 was 118750.

(3)

(3)

The number of visitors is expected to increase by 4% each year over the next two years.


Calculate the expected number of visitors in 2026.

Solution

Well, the expected number of visitors in 2026 is

$$118750 \times (1.04)^2 = \underline{128440}.$$

2. A shop sells footballs in the shape of a sphere with diameter 21 centimetres.

Calculate the volume of the football.

Give your answer correct to 3 significant figures.

Solution

Well,

diameter =
$$21 \Rightarrow \text{radius} = 10.5 \text{ cm}$$
.

Now,

volume =
$$\frac{4}{3} \times \pi \times (10.5)^3$$

= 4849.048261 (FCD)
= $\underline{4850 \text{ cm}^3 (3 \text{ sf})}$.

(2)

(4)

3. The mass of one atom of gold is 3.27×10^{-22} grams.

The mass of one atom of carbon is 6.1% of the mass of an atom of gold.

Calculate the mass of one atom of carbon.

Give your answer in scientific notation.

Solution

Well,

mass of one atom of carbon =
$$\frac{6.1}{100} \times 3.27 \times 10^{-22}$$

= $\underbrace{1.9947 \times 10^{-23} \text{ g}}$.

4. The weights, in kilograms, of a sample of rugby players in Scotland are shown:

93 103 99 105 88 106 92

(a) Calculate the mean and standard deviation of these weights.

Solution

Well,

mean =
$$\frac{93 + 103 + 99 + 105 + 88 + 106 + 92}{7}$$
$$= \frac{686}{7}$$
$$= 98 kg.$$

Now,

		-	WALLY.				
x	93	103	99	105	88	106	92
x^2	8 6 4 9	10609	9801	11025	7744	11236	8464

so,

$$\sum x^2 = 67528.$$

Finally,

standard deviation =
$$\sqrt{\frac{67528 - \frac{686^2}{7}}{6}}$$

= $\sqrt{50}$
= $\frac{5\sqrt{2}}{6}$.

A sample of rugby players in France has a mean weight of 105 kilograms and a standard deviation of 5.9 kilograms.

(b) Make two valid comments comparing the weights of the rugby players in the samples from Scotland and France.

(2)

(2)

Solution

<u>Average</u>: on average the weights of the rugby players in Scotland are lower. Spread: the weights of the rugby players in Scotland are more varied.

5. Express

$$x^2 + 10x + 19$$

in the form

$$(x+a)^2 + b.$$

Solution

Well,

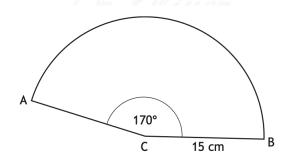
coefficient of
$$x:$$
 +10

$$+5$$

$$(+5)^2 = +25$$

and

$$x^{2} + 10x + 19 = [(x^{2} + 10x + 25) - 25] + 19$$
$$= (x + 5)^{2} - 25 + 19$$
$$= (x + 5)^{2} - 6;$$


hence, $\underline{a} = \underline{5}$ and $\underline{b} = -\underline{6}$.

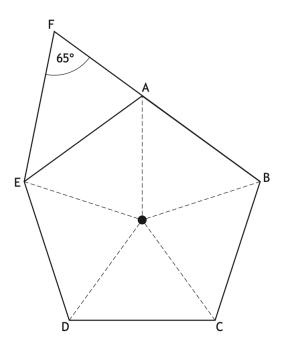
6. A party hat is made in the shape of a cone, as shown.

(3)

The piece of card used for making the hat is a sector of a circle, centre C.

The radius of the circle is 15 centimetres and angle ACB is 170° .

Calculate the area of the sector.

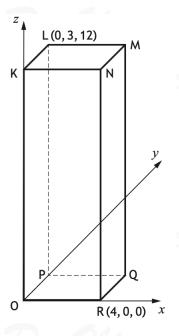

Solution

Now,

$$arc AB = \frac{170}{360} \times \pi \times 15^{2}$$
$$= \frac{425}{4}\pi.$$

(2)

- 7. In the diagram, ABCDE is a regular pentagon.
 - Angle EFA is 65° .
 - \bullet FAB is a straight line.


Calculate the size of angle FEA.

Solution

Let ${\cal O}$ be centre of the regular pentagon. Well,

$$\angle EAB = \frac{180(5-2)}{5}$$
= 108° ;
 $\angle FAE = 180 - 108$
= 72° ;
 $\angle FEA = 180 - (65 + 72)$
= $\underline{43^{\circ}}$.

8. The diagram shows a cuboid, KLMNOPQR, relative to the coordinate axes.

- L has coordinates (0, 3, 12).
- R has coordinates (4,0,0).

M(4,3,12)

(a) Write down the coordinates of M.

Solution

(b) Calculate the length of the space diagonal OM.

(1)

Solution

Well,

$$OM = \sqrt{OR^2 + RQ^2 + QM^2}$$

$$= \sqrt{4^2 + 3^2 + 12^2}$$

$$= \sqrt{16 + 9 + 144}$$

$$= \sqrt{169}$$

$$= \underline{13}.$$

9. Change the subject of the formula

$$c = \frac{1}{2}kc^2 - 3c$$

to k.

Solution

Well,

$$B = \frac{1}{4}kc^2 - 3c \Rightarrow B + 3c = \frac{1}{4}kc^2$$
$$\Rightarrow k = \frac{4(B + 3c)}{c^2}.$$

10. On Bob's lorry there are 7 stacks of paving slabs and 3 stacks of edging blocks.

The total weight of these stacks is 2400 kilograms.

Let p be the weight of a stack of paving slabs and e be the weight of a stack of edging blocks.

(a) Write down an equation in p and e to illustrate this information.

(1)

(3)

$$7p + 3e = 2400.$$

Imran has 3 stacks of paving slabs and 4 stacks of edging blocks on his lorry.

The total weight of these stacks is $1\,300$ kilograms.

(b) Write down an equation in p and e to illustrate this information.

(1)

Solution

$$3p + 4e = 1300.$$

Beth has 6 stacks of paving slabs and 5 stacks of edging blocks on her lorry.

(c) Calculate the **total weight** of the stacks of paving slabs and edging blocks on Beth's lorry. (4)

Solution

Well,

$$7p + 3e = 2400$$
 (1)

$$3p + 4e = 1300$$
 (2).

Do $4 \times (1)$ and $3 \times (2)$:

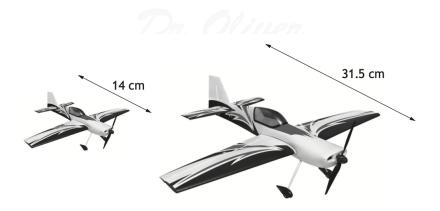
$$28p + 12e = 9600 \quad (3)$$

$$9p + 12e = 3\,900$$
 (4).

Do (3) - (4):

$$19p = 5700 \Rightarrow p = 300$$

insert this into (1):


$$7(300) + 3e = 2400 \Rightarrow 2100 + 3e = 2400$$

 $\Rightarrow 3e = 300$
 $\Rightarrow e = 100.$

Finally,

total weight =
$$(6 \times 300) + (5 \times 100)$$

= $1800 + 500$
= $\underline{2300 \text{ kg}}$.

11. Two model aircraft are mathematically similar.

(3)

- The small model is 14 centimetres long, and the area of one wing is 24 square centimetres.
- The large model is 31.5 centimetres long.

Calculate the **area** of one wing of the large model.

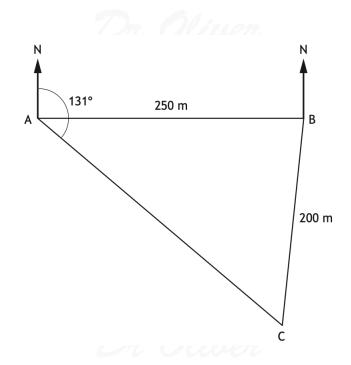
Solution

The Length Scale Ratio (LSR) is

$$\frac{31.5}{14} = 2.25$$

and the Area Scale Ratio (ASR) is

$$2.25^2 = 5.0625.$$


Finally,

one wing of the large model = 24×5.0625 = $\underline{121.5}$ square centimetres.

12. In the diagram A, B, and C represent the positions of three checkpoints in an orienteering course.

(4)

- B is 250 metres east of A.
- The bearing of C from A is 131° .
- C is 200 metres from B.

Calculate the bearing of C from B.

Do not use a scale drawing.

Solution

Well,

$$\angle BAC = 131 - 90 = 41^{\circ}.$$

Sine rule:

$$\frac{\sin ACB}{AB} = \frac{\sin BAC}{BC} \Rightarrow \frac{\sin ACB}{250} = \frac{\sin 41^{\circ}}{200}$$

$$\Rightarrow \sin ACB = \frac{250 \sin 41^{\circ}}{200}$$

$$\Rightarrow \angle ACB = 55.092 \, 180 \, 72 \, (FCD)$$

$$\Rightarrow \angle ABC = 83.907 \, 819 \, 28 \, (FCD)$$

$$\Rightarrow \text{bearing} = 180 + (90 - 83.907 \dots)$$

$$\Rightarrow \text{bearing} = 186.092 \, 180 \, 7 \, (FCD)$$

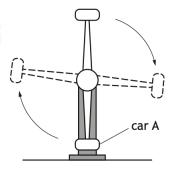
$$\Rightarrow \text{bearing} = 186^{\circ} \, (3 \, \text{sf}).$$

13. Solve the equation

$$\frac{5x+1}{2} = \frac{4x}{3} + 1. ag{3}$$

(4)

Solution


Multiply the whole the equation by 6:

$$\frac{5x+1}{2} = \frac{4x}{3} + 1 \Rightarrow 3(5x+1) = 2(4x) + 6$$
$$\Rightarrow 15x + 3 = 8x + 6$$
$$\Rightarrow 7x = 3$$
$$\Rightarrow \underline{x = \frac{3}{7}}.$$

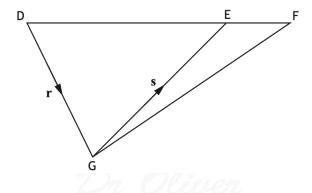
14. A ride at a theme park has a car attached to each end of a rotating arm.

The starting position of car A is shown in the diagram.

As the arm rotates clockwise, the height, h metres, of car A above the ground in each rotation is given by

$$h = 10 - 8\cos x^{\circ}, \ 0 \le x < 360,$$

where x° is the angle the arm has turned from car A's starting position.


Calculate the two values of x for which the height of car A is 13 metres above the ground.

Solution

Well,

$$10 - 8\cos x^{\circ} = 13 \Rightarrow -8\cos x^{\circ} = 3$$

 $\Rightarrow \cos x^{\circ} = -\frac{3}{8}$
 $\Rightarrow x = 112.0243128, 247.9756872 \text{ (FCD)}$
 $\Rightarrow x = 112, 248 \text{ (3 sf)}.$

15. In the diagram, \overrightarrow{DG} and \overrightarrow{GE} are represented by the vectors \mathbf{r} and \mathbf{s} respectively, and (2) $\overrightarrow{DE} = 3\overrightarrow{EF}.$

Express \overrightarrow{GF} in terms of **r** and **s**. Give your answer in its simplest form.

Solution

Well,

$$\overrightarrow{DF} = \frac{4}{3}\overrightarrow{DE}$$

$$= \frac{4}{3}(\overrightarrow{DG} + \overrightarrow{GE})$$

$$= \frac{4}{3}(\mathbf{r} + \mathbf{s})$$

$$= \frac{4}{3}\mathbf{r} + \frac{4}{3}\mathbf{s},$$

and

$$\overrightarrow{GF} = \overrightarrow{GD} + \overrightarrow{DF}$$

$$= -\overrightarrow{FD} + \overrightarrow{DF}$$

$$= -\mathbf{r} + \frac{4}{3}\mathbf{r} + \frac{4}{3}\mathbf{s}$$

$$= \frac{1}{3}\mathbf{r} + \frac{4}{3}\mathbf{s}.$$

Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics