Dr Oliver Mathematics Further Mathematics Second Order Differential Equations Past Examination Questions

This booklet consists of 37 questions across a variety of examination topics. The total number of marks available is 435.

1. Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 6\frac{\mathrm{d}y}{\mathrm{d}x} + 8y = \mathrm{e}^{3x}.$$

(6)

(7)

Solution

Complementary function:

$$m^2 - 6m + 8 = 0 \Rightarrow (m-2)(m-4) = 0 \Rightarrow m = 2 \text{ or } m = 4$$

and hence the complementary function is

$$y = Ae^{2x} + Be^{4x}.$$

Particular integral: try

$$y = Ce^{3x} \Rightarrow \frac{dy}{dx} = 3Ce^{3x} \Rightarrow \frac{d^2y}{dx^2} = 9Ce^{3x}.$$

Substitute into the differential equation:

$$9C - 18C + 8C = 1 \Rightarrow C = -1$$
.

Hence the particular integral is $y = -e^{3x}$.

General solution: hence the general solution is

$$y = Ae^{2x} + Be^{4x} - e^{3x}.$$

2. Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 8\frac{\mathrm{d}y}{\mathrm{d}x} + 16y = 4x.$$

Solution

Complementary function:

$$m^{2} - 8m + 16 = 0 \Rightarrow (m - 4)^{2} = 0 \Rightarrow m = 4 \text{ (repeated root)}$$

and hence the complementary function is

$$y = (A + Bx)e^{4x}.$$

Particular integral: try

$$y = Cx + D \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = C \Rightarrow \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = 0.$$

Substitute into the differential equation:

$$0 - 8C + 16(Cx + D) \equiv 4x \Rightarrow C = \frac{1}{4}, D = \frac{1}{8}.$$

Hence the particular integral is $y = \frac{1}{4}x + \frac{1}{8}$.

General solution: hence the general solution is

$$y = (A + Bx)e^{4x} + \frac{1}{4}x + \frac{1}{8}.$$

3. (a) Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + 17y = 17x + 36.$$

(7)

Solution

Complementary function:

$$m^2 + 2m + 17 = 0 \Rightarrow (m+1)^2 + 16 = 0 \Rightarrow m = -1 \pm 4i$$

and hence the complementary function is

$$y = e^{-x}(A\sin 4x + B\cos 4x).$$

Particular integral: try

$$y = Cx + D \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = C \Rightarrow \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = 0.$$

Substitute into the differential equation:

$$0 + 2C + 17(Cx + D) \equiv 17x + 36 \Rightarrow C = 1, D = 2.$$

So the particular integral is y = x + 2.

General solution: hence the general solution is

$$\underline{y} = e^{-x}(A\sin 4x + B\cos 4x) + x + 2.$$

(b) Show that, when x is large and positive, the solution approximates to a linear function and state the equation of the linear function.

(2)

(9)

Solution

For all x,

$$-\sqrt{A^2 + B^2} \leqslant A\sin 4x + B\cos 4x \leqslant \sqrt{A^2 + B^2}.$$

Since $e^{-x} \to 0$ as $x \to \infty$,

$$e^{-x}(A\sin 4x + B\cos 4x) \to 0$$

as $x \to \infty$. Hence

$$y = e^{-x}(A\sin 4x + B\cos 4x) + x + 2 \to \underline{x+2} \text{ as } x \to \infty.$$

4. Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} + 5y = 65\sin 2x.$$

Solution

Complementary function:

$$m^2 + 4m + 5 = 0 \Rightarrow (m+2)^2 + 1 = 0 \Rightarrow m = -2 \pm i$$

and hence the complementary function is

$$y = e^{-2x} (A\sin x + B\cos x).$$

Particular integral: try

$$y = C\sin 2x + D\cos 2x \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2C\cos 2x - 2D\sin 2x$$
$$\Rightarrow \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = -4C\sin 2x - 4D\cos 2x.$$

Substitute into the differential equation and equate like terms:

$$\sin 2x$$
: $-4C - 8D + 5C = 65 \Rightarrow C - 8D = 65$
 $\cos 2x$: $-4D + 8C + 5D = 0 \Rightarrow 8C + D = 0$.

Solving gives C = 1 and D = -8 and hence the particular integral is

$$y = \sin 2x - 8\cos 2x.$$

General solution: the general solution is

$$y = e^{-2x} (A \sin x + B \cos x) + \sin 2x - 8 \cos 2x.$$

5. The variables x and y satisfy the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 6\frac{\mathrm{d}y}{\mathrm{d}x} + 9y = \mathrm{e}^{3x}.$$

(a) Find the complementary function.

Solution

The auxiliary equation is

$$m^{2} - 6m + 9 = 0 \Rightarrow (m - 3)^{2} = 0 \Rightarrow m = 3 \text{ (repeated root)}$$

(3)

and hence the complementary function is

$$y = (A + Bx)e^{3x}.$$

(b) Explain briefly why there is no particular integral if either of the forms $y = ke^{3x}$ or (1) $y = kxe^{3x}$. Mathematics 4

1 4'

Solution

Both of these functions are part of the complementary function and so they each satisfy the equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 6\frac{\mathrm{d}y}{\mathrm{d}x} + 9y = 0.$$

(c) Given that there is a particular integral of the form $y = kx^2e^{3x}$, find the value of k. (5)

Solution

$$\frac{dy}{dx} = (2kx + 3kx^2)e^{3x}$$
 and $\frac{d^2y}{dx^2} = (2k + 12kx + 9kx^2)e^{3x}$

Substitute into the differential equation and equate like terms:

$$e^{3x}: 2k + 0 + 0 = 1 \Rightarrow \underline{k = \frac{1}{2}}$$

 xe^{3x} : 12k - 12k + 0 = 0 (giving no information)

 x^2e^{3x} : 9k - 18k + 9k = 0 (giving no information).

(10)

6. Solve the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} - 3y = 2\mathrm{e}^{-x}$$

given that $y \to 0$ as $x \to \infty$ and that $\frac{\mathrm{d}y}{\mathrm{d}x} = -3$ when x = 0.

Solution

The auxiliary equation is

$$m^2 - 2m - 3 = 0 \Rightarrow (m - 3)(m + 1) = 0 \Rightarrow m = -1 \text{ or } m = 3$$

and hence the complementary function is

$$y = Ae^{-x} + Be^{3x}$$

Since e^{-x} is part of the complementary function, for the particular integral try

$$y = Cxe^{-x} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = (C - Cx)e^{-x} \Rightarrow \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = (Cx - 2C)e^{-x}.$$

Substitute into the differential equation and equate like terms:

$$e^{-x}: -2C-2C=2$$

$$xe^{-x}$$
: $C + 2C - 3C = 0$ (and this gives us no information).

and hence $C = -\frac{1}{2}$. So the general solution is

$$y = Ae^{-x} + Be^{3x} - \frac{1}{2}xe^{-x}.$$

Since $y \to 0$ as $x \to \infty$ we need B = 0 or else the function will become unbounded as $e^{3x} \to \infty$ as $x \to \infty$. Now

$$\frac{dy}{dx} = -Ae^{-x} + (-\frac{1}{2} + \frac{1}{2}x)e^{-x}.$$

So

$$x = 0, \frac{\mathrm{d}y}{\mathrm{d}x} = -3 \Rightarrow -3 = -A - \frac{1}{2} \Rightarrow A = \frac{5}{2}.$$

Hence

$$y = \frac{5}{2}e^{-x} - \frac{1}{2}xe^{-x}.$$

7. The variables x and y satisfy the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} = 12\mathrm{e}^{2x}.$$

(a) Find the general solution of the differential equation.

Solution

The auxiliary equation is

$$m^2 + 4m = 0 \Rightarrow m(m+4) = 0 \Rightarrow m = 0 \text{ or } m = -4$$

(6)

and hence the complementary function is

$$y = A + Be^{-4x}.$$

For the particular integral try

$$y = Cxe^{2x} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2Ce^{2x} \Rightarrow \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = 4Ce^{2x}.$$

Substitute into the differential equation:

$$4C + 8C = 12 \Rightarrow C = 1.$$

So the particular integral is $y = e^{2x}$ and hence the general solution is

$$y = A + Be^{-4x} + e^{2x}.$$

(b) It is given that the curve which represents a particular solution of the differential equation has gradient 6 when x = 0 and approximates to $y = e^{2x}$ when x is large and positive. Find the equation of the curve.

Solution

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -4B\mathrm{e}^{-4x} + 2\mathrm{e}^{2x}$$
 and hence $x = 0 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -4B + 2 \Rightarrow B = -1$.

Since y is approximated by e^{2x} we also need A = 0. Hence

$$\underline{y = -e^{-4x} + e^{2x}}.$$

8. A differential equation is given by

$$\sin^2 x \frac{d^2 y}{dx^2} - 2\sin x \cos x \frac{dy}{dx} + 2y = 2\sin^4 x \cos x, \ 0 < x < \pi.$$

(a) Show that the substitution $y = u \sin x$, where u is a function of x, transforms this differential equation into

$$\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + u = \sin 2x.$$

Solution

$$\frac{\mathrm{d}y}{\mathrm{d}x} = u\cos x + \sin x \frac{\mathrm{d}u}{\mathrm{d}x}$$

and

$$\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$$

$$= \frac{d}{dx} \left(u \cos x + \sin x \frac{du}{dx} \right)$$

$$= \frac{du}{dx} \cos x - u \sin x + \cos x \frac{du}{dx} + \sin \frac{d^2 u}{dx^2}$$

$$= 2 \cos x \frac{du}{dx} - u \sin x + \sin \frac{d^2 u}{dx^2}.$$

Hence

$$\sin^2 x \frac{d^2 y}{dx^2} - 2\sin x \cos x \frac{dy}{dx} + 2y = 2\sin^4 x \cos x$$

$$\Rightarrow \sin^2 x \left(2\cos x \frac{du}{dx} - u\sin x + \sin \frac{d^2 u}{dx^2} \right)$$

$$- 2\sin x \cos x \left(u\cos x + \sin x \frac{du}{dx} \right) + 2u\sin x = 2\sin^4 x \cos x$$

$$\Rightarrow -u\sin^3 x + \sin^3 x \frac{d^2 u}{dx^2} - 2u\sin x \cos^2 x + 2u\sin x = 2\sin^4 x \cos x$$

$$\Rightarrow -u\sin^3 x + \sin^3 x \frac{d^2 u}{dx^2} + 2u\sin x (1 - \cos^2 x) = 2\sin^4 x \cos x$$

$$\Rightarrow \sin^3 x \frac{d^2 u}{dx^2} + u\sin^3 x = 2\sin^4 x \cos x$$

$$\Rightarrow \sin^3 x \frac{d^2 u}{dx^2} + u\sin^3 x = 2\sin^4 x \cos x$$

$$\Rightarrow \frac{d^2 u}{dx^2} + u = 2\sin x \cos x$$

$$\Rightarrow \frac{d^2 u}{dx^2} + u = \sin 2x,$$

as required.

(b) Hence find the general solution to the differential equation

$$\sin^2 x \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\sin x \cos x \frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 2\sin^4 x \cos x$$

(6)

giving your answer in the form y = f(x).

Solution

The auxiliary equation is

$$m^2 + 1 = 0 \Rightarrow m = \pm i$$

and hence the complementary function is

$$u = A\sin x + B\cos x.$$

Since the differential equation involves only the function and the second derivative for the particular integral we can try

$$u = C \sin 2x \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 2C \cos 2x \Rightarrow \frac{\mathrm{d}^2 u}{\mathrm{d}x^2} = -4C \sin 2x.$$

Substitute into the differential equation:

$$-4C + C = 1 \Rightarrow C = -\frac{1}{3}.$$

So the particular integral is $u = -\frac{1}{3}\sin 2x$ and hence the general solution is

$$u = A\sin x + B\cos x - \frac{1}{3}\sin 2x.$$

Since $y = u \sin x$,

$$y = \sin x \left(A \sin x + B \cos x - \frac{1}{3} \sin 2x \right).$$

9. The differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4y = \sin kx$$

is to be solved, where k is a constant.

(a) In the case k = 2, by using a particular integral of the form $ax \cos 2x + bx \sin 2x$, find the general solution. (7)

Solution

The auxiliary equation is

$$m^2 + 4 = 0 \Rightarrow m = +2i$$

and hence the complementary function is

$$y = A\sin 2x + B\cos 2x.$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = a\cos 2x - 2ax\sin 2x + b\sin 2x + 2bx\cos 2x$$

$$\frac{d^2y}{dx^2} = -4a\sin 2x - 4ax\cos 2x + 4b\cos 2x - 4bx\sin 2x.$$

Substitute into the differential equation and equate like terms:

$$\sin 2x: -4a + 0 = 1 \Rightarrow a = -\frac{1}{2}$$

$$\cos 2x: \quad 4b + 0 = 0 \Rightarrow b = 0$$

$$x \sin 2x$$
: $-4b + 4b = 0$ (giving us no information)

$$x \cos 2x$$
: $-4a + 4a = 0$ (giving us no information).

So the particular integral is $y = -\frac{1}{2}x\sin 2x$ and hence the general solution is

$$y = A\sin 2x + B\cos 2x - \frac{1}{2}x\sin 2x.$$

(b) Describe briefly the behaviour of your solution for y when $x \to \infty$. (2)

Solution

 $|y| \to \infty$ as $x \to \infty$ as the terms in $\sin 2x$ and $\cos 2x$ are bounded but the final term is unbounded.

(c) In the case $k \neq 2$, explain briefly whether y would exhibit the same behaviour as in part (b) when $x \to \infty$.

Solution

No: if $k \neq 2$ then the particular integral would have the form $y = C \sin kx + D \cos kx$ and this, like the terms in the complementary function, is bounded.

10. The variables x and y satisfy the differential equation

$$2\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 2y = 5e^{-2x}.$$

(a) Find the complementary function of the differential equation.

Solution

The auxiliary equation is

$$2m^2 + 3m - 2 = 0 \Rightarrow (2m - 1)(m + 2) = 0 \Rightarrow m = \frac{1}{2} \text{ or } m = -2$$

(2)

and hence the complementary function is

$$y = Ae^{\frac{1}{2}x} + Be^{-2x}.$$

(b) Given that there is a particular integral of the form $y = pxe^{-2x}$, find the constant p. (4)

Solution

$$y = pxe^{-2x} \Rightarrow \frac{dy}{dx} = (p - 2px)e^{-2x} \Rightarrow \frac{d^2y}{dx^2} = (-4p + 4px)e^{-2x}.$$

Substitute into the differential equation and equate like terms:

$$e^{-2x}: -8p + 3p + 0 = 5 \Rightarrow p = -1$$

$$xe^{-2x}$$
: $8p - 6p - 2p = 0$ (giving no information).

(c) Find the solution of the differential equation for which y = 0 and $\frac{dy}{dx} = 4$ when x = 0.

Solution

The general solution is

$$y = Ae^{\frac{1}{2}x} + Be^{-2x} - xe^{-2x}.$$

Now y = 0 when x = 0 and hence A + B = 0. Next,

$$\frac{dy}{dx} = \frac{1}{2}Ae^{\frac{1}{2}x} - 2Be^{-2x} - e^{-2x} + 2xe^{-2x}$$

and, since $\frac{dy}{dx} = 4$ when x = 0, we have $4 = \frac{1}{2}A - 2B - 1$. Solving these simultaneous equations gives A = 2 and B = -2. So the solution is

$$y = 2e^{\frac{1}{2}x} - 2e^{-2x} - xe^{-2x}.$$

(11)

11. Find the solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 3\frac{\mathrm{d}y}{\mathrm{d}x} + 5y = \mathrm{e}^{-x}$$

for which $y = \frac{\mathrm{d}y}{\mathrm{d}x} = 0$ when x = 0.

Solution

The auxiliary equation is

$$m^{2} + 2m + 5 = 0 \Rightarrow (m+1)^{2} + 4 = 0 \Rightarrow m = -1 \pm 2i$$

and so the complementary function is

$$y = e^{-x}(A\sin 2x + B\cos 2x).$$

For the particular integral, try $y = Ce^{-x}$. (Note that this is not part of the complementary function: both $e^{-x} \sin 2x$ and $e^{-x} \cos 2x$ are but not e^{-x} on its own.) Then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -C\mathrm{e}^{-x} \text{ and } \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = C\mathrm{e}^{-x}.$$

Substitute into the differential equation:

$$C - 3C + 5C = 1 \Rightarrow C = \frac{1}{3}.$$

So the particular integral is $y = \frac{1}{3}e^{-x}$ and hence the general solution is

$$y = e^{-x} (\frac{1}{3} + A \sin 2x + B \cos 2x).$$

Now, since y = 0 when x = 0, we have

$$0 = \frac{1}{3} + B \Rightarrow B = -\frac{1}{3}.$$

Next,

$$\frac{dy}{dx} = -e^{-x}(\frac{1}{3} + A\sin 2x - \frac{1}{3}\cos 2x) + e^{-x}(2A\cos 2x + \frac{2}{3}\sin 2x).$$

So,

$$x = 0, \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow 0 = \frac{1}{3} - \frac{1}{3} + 2A \Rightarrow A = 0.$$

So the solution is

$$y = e^{-x} (\frac{1}{3} - \frac{1}{3}\cos 2x).$$

12. The variables x and y satisfy the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 16y = 8\cos 4x.$$

(a) Find the complementary function of the differential equation.

Solution

The auxiliary equation is

$$m^2 + 16 = 0 \Rightarrow m = \pm 4i$$

(2)

and so the complementary function is

$$\underline{y = A\sin 4x + B\cos 4x}.$$

(b) Given that there is a particular integral of the form $y = px \sin 4x$, where p is a constant, find the general solution of the differential equation.

Solution

$$\frac{\mathrm{d}y}{\mathrm{d}x} = p\sin 4x + 4px\cos 4x \text{ and } \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = 8p\cos 4x - 16px\sin 4x.$$

Substitute into the differential equation and equate like terms:

$$x \sin 4x$$
: $-16p + 16p = 0$ (and this tells us nothing)

$$\cos 4x: \quad 8p + 0 = 8 \Rightarrow p = 1.$$

So the particular integral is $y = x \sin 4x$ and hence the general solution is

$$\underline{y = A\sin 4x + B\cos 4x + x\sin 4x}.$$

(c) Find the solution of the equation for which
$$y = 2$$
 and $\frac{dy}{dx} = 0$ when $x = 0$.

(4)

(7)

Solution

x = 0 and y = 2 tells us that B = 2.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 4A\cos 4x - 8\sin 4x + \sin 4x + 4x\cos 2x$$

and so $x = \frac{\mathrm{d}y}{\mathrm{d}x} = 0$ tells us that A = 0. Hence

$$\underline{\underline{y = 2\cos 4x + x\sin 4x}}.$$

$$3\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 2y = -2x + 13.$$

Solution

The auxiliary equation is

$$3m^2 + 5m - 2 = 0 \Rightarrow (3m - 1)(m + 2) = 0 \Rightarrow m = \frac{1}{3} \text{ or } m = -2$$

and hence the complementary function is

$$y = Ae^{\frac{1}{3}x} + Be^{-2x}.$$

For the particular integral, try

$$y = Cx + D \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = C \Rightarrow \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = 0.$$

Substitute into the differential equation and equate like terms:

$$5C - 2(Cx + D) = -2x + 13 \Rightarrow C = -1 \text{ and } D = -4.$$

So the particular integral is y = -x - 4 and the general solution is

$$y = Ae^{\frac{1}{3}x} + Be^{-2x} - x - 4.$$

(b) Find the particular solution for which $y = -\frac{7}{2}$ and $\frac{dy}{dx} = 0$ when x = 0.

Solution

$$x = 0, y = -\frac{7}{2} \Rightarrow -\frac{7}{2} = A + B - 4.$$

(5)

(1)

(2)

Differentiate:

$$\frac{dy}{dx} = \frac{1}{3}Ae^{\frac{1}{3}x} - 2Be^{-2x} - 1 \Rightarrow 0 = \frac{1}{3}A - 2B.$$

Solve these simultaneous equations to get $A = \frac{3}{7}$ and $B = \frac{1}{14}$. So the solution is

$$y = \frac{3}{7}e^{\frac{1}{3}x} + \frac{1}{14}e^{-2x} - x - 4.$$

(c) Write down the function to which y approximates when x is large and positive.

Solution

Since $e^{-2x} \to 0$ as $x \to \infty$, we have

$$y = \frac{3}{7}e^{\frac{1}{3}x} - x - 4.$$

14. (a) Find the complementary function of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + y = \csc x.$$

Solution

The auxiliary equation is

$$m^2 + 1 = 0 \Rightarrow m = \pm i$$

and so the complementary function is

$$y = A\sin x + B\cos x.$$

(b) It is given that

$$y = p(\ln \sin x) \sin x + qx \cos x,$$

where p and q are constants, is a particular integral of the differential equation.

(i) Show that

$$p - 2(p+q)\sin^2 x \equiv 1.$$

Solution

$$y = p(\ln \sin x)\sin x + qx\cos x$$

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = p\cos x + p(\ln\sin x)\cos x + q\cos x - qx\sin x$$

$$\Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -q\sin x - p(\ln\sin x)\sin x + p\cos^2 x\csc x - 2q\sin x - qx\cos x.$$

Since this satisfies the differential equation,

$$-p\sin x + p\cos^2 x \csc x - 2q\sin x = \csc x$$

$$\Rightarrow$$
 $-p\sin x - 2q\sin x + p(1-\sin^2 x)\csc x = \csc x$

$$\Rightarrow -p\sin x - 2q\sin x + p\csc x - p\sin x = \csc x$$

$$\Rightarrow -2p\sin^2 x - 2q\sin^2 x + p = 1$$

$$\Rightarrow p - 2(p+q)\sin^2 x = 1,$$

as required.

(ii) Deduce the values of p and q.

(2)

(6)

Solution

Since this an identity,

$$x = 0 \Rightarrow \underline{\underline{p} = 1}$$
 and $x = \frac{\pi}{2} \Rightarrow \underline{\underline{q} = -1}$.

(c) Write down the general solution of the differential equation. State the set of values of x, in the interval $0 \le x \le 2\pi$, for which the solution is valid, justifying your answer.

(3)

(6)

Solution

The general solution is

$$\underline{y = A\sin x + B\cos x + (\ln\sin x)\sin x - x\cos x}.$$

y does not exist when $\sin x = 0$ and hence the required range of values for x is

$$0 < x < \pi \text{ and } \pi < x < 2\pi.$$

15. (a) Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 6\frac{\mathrm{d}y}{\mathrm{d}t} + 10y = \mathrm{e}^{2t},$$

giving your answer in the form y = f(t).

Solution

The auxiliary equation is

$$m^2 - 6m + 10 = 0 \Rightarrow (m - 3)^2 + 1 = 0 \Rightarrow m = 3 \pm i$$

and hence the complementary function is

$$y = e^{3t} (A\sin t + B\cos t).$$

For the particular integral try

$$y = Ce^{2t} \Rightarrow \frac{dy}{dt} = 2Ce^{2t} \Rightarrow \frac{d^2y}{dt^2} = 4Ce^{2t}.$$

Substitute into the differential equation:

$$4C - 12C + 10C = 1 \Rightarrow C = \frac{1}{2}$$

and hence the particular integral is $y = \frac{1}{2}e^{2t}$. So the general solution is

$$y = e^{3t}(A\sin t + B\cos t) + \frac{1}{2}e^{2t}.$$

(b) Given that $x = t^{\frac{1}{2}}$, x > 0, t > 0, and y is a function of x, show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4t \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 2 \frac{\mathrm{d}y}{\mathrm{d}t}.$$

(5)

(2)

Solution

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \left(\frac{1}{2}t^{-\frac{1}{2}}\right) = 2t^{\frac{1}{2}}\frac{\mathrm{d}y}{\mathrm{d}t}$$

and hence

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right)$$

$$= \frac{\mathrm{d}}{\mathrm{d}x} \left(2t^{\frac{1}{2}} \frac{\mathrm{d}y}{\mathrm{d}t} \right)$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(2t^{\frac{1}{2}} \frac{\mathrm{d}y}{\mathrm{d}t} \right) \div \frac{\mathrm{d}x}{\mathrm{d}t}$$

$$= \left(t^{-\frac{1}{2}} \frac{\mathrm{d}y}{\mathrm{d}t} + 2t^{\frac{1}{2}} \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} \right) \div \left(\frac{1}{2}t^{-\frac{1}{2}} \right)$$

$$= 2\frac{\mathrm{d}y}{\mathrm{d}t} + 4t\frac{\mathrm{d}^2 y}{\mathrm{d}t^2},$$

as required.

(c) Hence show that the substitution $x = t^{\frac{1}{2}}$ transforms the differential equation

$$x\frac{d^2y}{dx^2} - (12x^2 + 1)\frac{dy}{dx} + 40x^3y = 4x^3e^{2x^2}$$

into

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 6\frac{\mathrm{d}y}{\mathrm{d}t} + 10y = e^{2t}.$$

Solution

$$x\frac{d^{2}y}{dx^{2}} - (12x^{2} + 1)\frac{dy}{dx} + 40x^{3}y = 4x^{3}e^{2x^{2}}$$

$$\Rightarrow t^{\frac{1}{2}}\left(4t\frac{d^{2}y}{dt^{2}} + 2\frac{dy}{dt}\right) - (12t + 1)\left(2t^{\frac{1}{2}}\frac{dy}{dt}\right) + 40t^{\frac{3}{2}}y = 4t^{\frac{3}{2}}e^{2t}$$

$$\Rightarrow 4t^{\frac{3}{2}}\frac{d^{2}y}{dt^{2}} + 2t^{\frac{1}{2}}\frac{dy}{dt} - 24t^{\frac{3}{2}}\frac{dy}{dt} - 2t^{\frac{1}{2}}\frac{dy}{dt} + 40t^{\frac{3}{2}}y = 4t^{\frac{3}{2}}e^{2t}$$

$$\Rightarrow 4t^{\frac{3}{2}}\frac{d^{2}y}{dt^{2}} - 24t^{\frac{3}{2}}\frac{dy}{dt} + 40t^{\frac{3}{2}}y = 4t^{\frac{3}{2}}e^{2t}$$

$$\Rightarrow \frac{d^{2}y}{dt^{2}} - 6\frac{dy}{dt} + 10y = e^{2t},$$

as required.

(d) Hence write down the general solution of the differential equation

$$x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - (12x^2 + 1)\frac{\mathrm{d}y}{\mathrm{d}x} + 40x^3y = 4x^3 \mathrm{e}^{2x^2}.$$

(1)

(7)

Solution

$$\underline{y = e^{3x^2}(A\sin x^2 + B\cos x^2) + \frac{1}{2}e^{2x^2}}.$$

16. (a) Show that the substitution $x = e^t$ transforms the differential equation

$$x^{2} \frac{d^{2}y}{dx^{2}} - 4x \frac{dy}{dx} + 6y = 30 + 20\sin(\ln x)$$

into

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 5\frac{\mathrm{d}y}{\mathrm{d}t} + 6y = 3 + 20\sin t.$$

Solution

This is a standard substitution and you need to know how to do this both correctly and quickly:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \mathrm{e}^t = x\frac{\mathrm{d}y}{\mathrm{d}x}$$

and

$$\frac{d^2 y}{dt^2} = \frac{d}{dt} \left(\frac{dy}{dt} \right) = \frac{d}{dt} \left(x \frac{dy}{dx} \right)$$

$$= \frac{d}{dx} \left(x \frac{dy}{dx} \right) \times \frac{dx}{dt}$$

$$= \left(\frac{dy}{dx} + x \frac{d^2 y}{dx^2} \right) \times x$$

$$= x \frac{dy}{dx} + x^2 \frac{d^2 y}{dx^2}.$$

Finally, $x = e^t$ and so $t = \ln x$. Hence

$$x^{2} \frac{\mathrm{d}^{2} y}{\mathrm{d}x^{2}} - 4x \frac{\mathrm{d}y}{\mathrm{d}x} + 6y = 30 + 20 \sin(\ln x)$$

$$\Rightarrow \left(x^{2} \frac{\mathrm{d}^{2} y}{\mathrm{d}x^{2}} + x \frac{\mathrm{d}y}{\mathrm{d}x}\right) - 5x \frac{\mathrm{d}y}{\mathrm{d}x} + 6y = 3 + 20 \sin(\ln x)$$

$$\Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{d}t^{2}} - 5 \frac{\mathrm{d}y}{\mathrm{d}t} + 6y = 3 + 20 \sin t,$$

as required.

(b) Find the general solution of

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 5\frac{\mathrm{d}y}{\mathrm{d}t} + 6y = 3 + 20\sin t.$$

(11)

Solution

The auxiliary equation is

$$m^2 - 5m + 6 = 0 \Rightarrow (m-2)(m-3) = 0 \Rightarrow m = 2 \text{ or } m = 3,$$

and hence the complementary function is

$$y = Ae^{2t} + Be^{3t}.$$

For the particular integral, try

$$y = C + D\sin t + E\cos t \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}t} = D\cos t - E\sin t$$
$$\Rightarrow \frac{\mathrm{d}^2y}{\mathrm{d}t^2} = -D\sin t - E\cos t.$$

If we substitute into the differential equation and compare like terms:

constant:
$$6C = 3 \Rightarrow C = \frac{1}{2}$$

$$\sin t$$
: $-D + 5E + 6D = 20 \Rightarrow 5D + 5E = 20$

$$\cos t: -E - 5D + 6E = 0 \Rightarrow -5D + 5E = 0,$$

and hence D=2 and E=2. Hence the particular integral is

$$y = \frac{1}{2} + 2\sin t + 2\cos t$$

and so the general solution is

$$y = Ae^{2t} + Be^{3t} + \frac{1}{2} + 2\sin t + 2\cos t.$$

(c) Write down the general solution of

$$x^{2} \frac{d^{2}y}{dx^{2}} - 4x \frac{dy}{dx} + 6y = 3 + 20\sin(\ln x).$$

(1)

(5)

Solution

By 'write down' they are not suggesting that you cannot have a line of working, merely that you are in a position to answer this from your previous work. We just need to replace e^t by x and note that, for example, $e^{2t} = (e^t)^2 = x^2$. Hence

$$y = Ax^2 + Bx^3 + \frac{1}{2} + 2\sin(\ln x) + 2\cos(\ln x).$$

17. (a) Show that the transformation y = vx transforms the equation

$$x^{2} \frac{\mathrm{d}^{2} y}{\mathrm{d}x^{2}} - 2x \frac{\mathrm{d}y}{\mathrm{d}x} + (2 + 9x^{2})y = x^{5} \tag{\dagger}$$

into the equation

$$\frac{\mathrm{d}^2 v}{\mathrm{d}x^2} + 9v = x^2. \tag{\ddagger}$$

Solution

$$y = vx \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = v + x \frac{\mathrm{d}v}{\mathrm{d}x}$$

and

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\frac{\mathrm{d}v}{\mathrm{d}x} + x\frac{\mathrm{d}^2 v}{\mathrm{d}x^2}.$$

Substitute into (†):

$$x^{2} \left(2\frac{\mathrm{d}v}{\mathrm{d}x} + x\frac{\mathrm{d}^{2}v}{\mathrm{d}x^{2}} \right) - 2x \left(v + x\frac{\mathrm{d}v}{\mathrm{d}x} \right) + (2 + 9x^{2})(vx) = x^{5}$$

$$\Rightarrow 2x^{2}\frac{\mathrm{d}v}{\mathrm{d}x} + x^{3}\frac{\mathrm{d}^{2}v}{\mathrm{d}x^{2}} - 2vx - 2x^{2}\frac{\mathrm{d}v}{\mathrm{d}x} + 2vx + 9vx^{3} = x^{5}$$

$$\Rightarrow x^{3}\frac{\mathrm{d}^{2}v}{\mathrm{d}x^{2}} + 9vx^{3} = x^{5}$$

$$\Rightarrow \frac{\mathrm{d}^{2}v}{\mathrm{d}x^{2}} + 9v = x^{2}.$$

(b) Solve the differential equation (\ddagger) to find v as a function of x.

Solution

Complementary function: The characteristic equation is

$$m^2 + 9 = 0 \Rightarrow m = +3$$

(6)

(1)

and so the complementary function is $v = A \sin 3x + B \cos 3x$.

Particular integral:

$$v = \mu x^2 + \nu x + \xi \Rightarrow \frac{\mathrm{d}v}{\mathrm{d}x} = 2\mu x + \nu \Rightarrow \frac{\mathrm{d}^2 v}{\mathrm{d}x^2} = 2\mu$$

and now

$$2\mu + 9(\mu x^2 + \nu x + \xi) = x^2 \Rightarrow \mu = \frac{1}{9}, \nu = 0, \xi = -\frac{1}{11}$$

and we have

$$v = \frac{1}{9}x^2 - \frac{2}{81}.$$

General solution:

$$\underbrace{v = A\sin 3x + B\cos 3x + \frac{1}{9}x^2 - \frac{2}{81}}_{}.$$

(c) Hence state the general solution of the differential equation (†).

Solution

Hence the general solution of the differential equation (†) is

$$y = x(A\sin 3x + B\cos 3x + \frac{1}{9}x^2 - \frac{1}{9}x - \frac{2}{81}).$$

18. (a) Find the general solution of the differential equation

$$2\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 5\frac{\mathrm{d}x}{\mathrm{d}t} + 2x = 2t + 9.$$

(6)

Solution

Complementary function:

$$2m^2 + 5m + 2 = 0 \Rightarrow (2m+1)(m+2) = 0$$

 $\Rightarrow m = -2 \text{ or } m = -\frac{1}{2},$

and the complementary function is

$$x = Ae^{-2t} + Be^{-\frac{1}{2}t}.$$

Particular integral:

$$x = at + b \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = a \Rightarrow \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = 0$$

and

$$0 + 5a + 2(at + b) = 2t + 9 \Rightarrow a = 1, b = 2$$

and the particular integral is

$$x = t + 2$$

 $\underline{\text{General solution}} :$ Hence, the general solution is

$$x = Ae^{-2t} + Be^{-\frac{1}{2}t} + t + 2.$$

(b) Find the particular solution of this differential equation for which x = 3 and $\frac{dx}{dt} = -1$ when t = 0.

Solution

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -2Ae^{-2t} - \frac{1}{2}Be^{-\frac{1}{2}t} + 1$$

and

$$3 = A + B + 2 \tag{1}$$

$$-1 = -2A - \frac{1}{2}B + 1. \tag{2}$$

Solve:

$$B = 1 - A \Rightarrow -1 = -2A - \frac{1}{2}(1 - A) + 1 \Rightarrow -\frac{3}{2} = -\frac{3}{2}A$$

and so

$$A = 1, B = 0.$$

Hence

$$\underline{x = e^{-2t} + t + 2}.$$

The particular solution in part (b) is used to model the motion of a particle P on the x-axis. At time t seconds ($t \ge 0$), P is x metres from the origin O.

(c) Show that the minimum distance between O and P is $\frac{1}{2}(5 + \ln 2)$ m and justify that the distance is a minimum.

(4)

Solution

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 0 \Rightarrow -2\mathrm{e}^{-2t} + 1 = 0$$

$$\Rightarrow \mathrm{e}^{-2t} = \frac{1}{2}$$

$$\Rightarrow -2t = \ln \frac{1}{2}$$

$$\Rightarrow t = -\frac{1}{2} \ln \frac{1}{2}$$

$$\Rightarrow t = \frac{1}{2} \ln 2.$$

Now,

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = 4\mathrm{e}^{-2t} > 0$$

and this is a minimum and

$$x = e^{-\ln 2} + \frac{1}{2} \ln 2 + 2$$

$$= e^{\ln \frac{1}{2}} + \frac{1}{2} \ln 2 + 2$$

$$= \frac{1}{2} + \frac{1}{2} \ln 2 + 2$$

$$= \frac{1}{2} (5 + \ln 2).$$

19. Given that $3x \sin 2x$ is a particular integral of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4y = k\cos 2x,$$

where k is a constant,

(a) calculate the value of k,

(4)

Solution

Particular integral: try $y = 3x \sin 2x$:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\sin 2x + 6x\cos 2x \text{ and } \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = 12\cos 2x - 12x\sin 2x.$$

Now,

$$(12\cos 2x - 12x\sin 2x) + 4(3x\sin 2x) = k\cos 2x$$

$$\Rightarrow 12\cos 2x = k\cos 2x$$

$$\Rightarrow \underline{k = 12}.$$

(b) find the particular solution of the differential equation for which at x=0, y=2, (4)and for which $x = \frac{\pi}{4}$, $y = \frac{\pi}{2}$.

Solution

Complementary function: The characteristic equation is

$$m^2 + 4 = 0 \Rightarrow m = \pm 2$$

and so the complementary function is $y = A \sin 2x + B \cos 2x$.

General solution: Hence the general solution is

$$y = A\sin 2x + B\cos 2x + 3x\sin 2x.$$

$$\begin{array}{l} \underline{x=0,y=2}\text{: }2=0+B+0\Rightarrow B=2.\\ \underline{x=\frac{\pi}{4},y=\frac{\pi}{2}}\text{: }\frac{\pi}{2}=A+0+\frac{3\pi}{4}\Rightarrow A=-\frac{\pi}{4}.\\ \text{Hence, the particular solution of the differential equation is} \end{array}$$

$$y = -\frac{\pi}{4}\sin 2x + 2\cos 2x + 3x\sin 2x.$$

20. A scientist is modelling the amount of a chemical in the human bloodstream. The amount x of the chemical, measured in mg l^{-1} , at a time t hours satisfies the differential equation

$$2x\frac{d^2x}{dt^2} - 6\left(\frac{dx}{dt}\right)^2 = x^2 - 3x^4, \ x > 0.$$

(a) Show that the substitution $y = \frac{1}{x^2}$ transforms this differential equation into

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + y = 3. \quad (\dagger)$$

(5)

(4)

Solution

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{2}{x^3} \frac{\mathrm{d}x}{\mathrm{d}t}$$

and

$$\frac{d^2 y}{dt^2} = \frac{d}{dt} \left(\frac{dy}{dt} \right)$$

$$= \frac{d}{dt} \left(-\frac{2}{x^3} \frac{dx}{dt} \right)$$

$$= \frac{6}{x^4} \left(\frac{dx}{dt} \right)^2 - \frac{2}{x^3} \frac{d^2 x}{dt^2}.$$

Now,

$$2x\frac{d^2x}{dt^2} - 6\left(\frac{dx}{dt}\right)^2 = x^2 - 3x^4$$

$$\Rightarrow \frac{2}{x^3}\frac{d^2x}{dt^2} - \frac{6}{x^4}\left(\frac{dx}{dt}\right)^2 = \frac{1}{x^2} - 3$$

$$\Rightarrow -\frac{d^2y}{dt^2} = y - 3$$

$$\Rightarrow \frac{d^2y}{dt^2} + y = 3.$$

(b) Find the general solution of the differential equation (†).

Solution

Complementary function:

$$m^2 + 1 = 0 \Rightarrow m = \pm 1$$

and the complementary function is $y = A \cos t + B \sin t$.

Particular integral: We try y = c:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = \frac{\mathrm{d}y}{\mathrm{d}t} = 0$$

and y = 3.

General solution: So, the general solution is

$$y = A\cos t + B\sin t + 3.$$

Given that at time t = 0, $x = \frac{1}{2}$ and $\frac{dx}{dt} = 0$,

(c) find an expression for x in terms of t,

Solution

$$y = A\cos t + B\sin t + 3 \Rightarrow \frac{1}{x^2} = A\cos t + B\sin t + 3.$$

(4)

(1)

Now,

$$x = \frac{1}{2}, t = 0 \Rightarrow 4 = A + 0 + 3 \Rightarrow A = 1.$$

Next,

$$\frac{1}{x^2} = A\cos t + B\sin t + 3 \Rightarrow -\frac{2}{x^3}\frac{\mathrm{d}x}{\mathrm{d}t} = -A\sin t + B\cos t$$

and

$$x = \frac{1}{2}, \frac{\mathrm{d}x}{\mathrm{d}t} = 0 \Rightarrow 0 = 0 + B \Rightarrow B = 0.$$

Hence,

$$\frac{1}{x^2} = \cos t + 3 \Rightarrow x^2 = \frac{1}{\cos t + 3}$$
$$\Rightarrow x = \sqrt{\frac{1}{\cos t + 3}},$$

because $x \ge 0$.

(d) write down the maximum values of x as t varies.

Dr Oliv

Solution

$$t = \pi \Rightarrow x = \sqrt{\frac{1}{2}}$$
.

21. For the differential equation

$$(12)$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 3\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 2x(x+3),$$

find the solution for which x = 0, $\frac{dy}{dx} = 1$, and y = 1.

Solution

Complementary function:

$$m^{2} + 3m + 2 = 0 \Rightarrow (m+1)(m+2) = 0$$

 $\Rightarrow m = -1 \text{ or } m = -2,$

and so we have

$$y = Ae^{-2x} + Be^{-x}.$$

Particular integral: Try

$$y = Cx^2 + Dx + E \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2Cx + D \Rightarrow \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = 2C.$$

Now,

$$2C + 3(2Cx + D) + 2(Cx^{2} + Dx + E) \equiv 2x^{2} + 6x.$$

Solve:

$$\underline{x^2}$$
: $2C = 2 \Rightarrow C = 1$.

$$\underline{x}$$
: $6C + 2D = 6 \Rightarrow D = 0$.

$$\underline{x}$$
. $0C + 2D = 0 \Rightarrow D = 0$.
 $\underline{constant}$: $2C + 3D + 2E = 2 \Rightarrow E = -1$.

Hence,

$$y = x^2 - 1$$
.

General solution: The general solution is

$$y = Ae^{-2x} + Be^{-x} + x^2 - 1.$$

Now,

$$x = 0, y = 1 \Rightarrow 1 = A + B + 0 - 1 \Rightarrow A + B = 2.$$

Differentiate:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -2A\mathrm{e}^{-2x} - B\mathrm{e}^{-x} + 2x$$

and

$$1 = -2A - B + 0 \Rightarrow 2A + B = -1.$$

Solve:

$$2A + (2 - A) = -1 \Rightarrow A = -3, B = 5$$

and

$$y = -3e^{-2x} + 5e^{-x} + x^2 - 1.$$

22. (a) Find the general solution of the differential equation

$$3\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - \frac{\mathrm{d}y}{\mathrm{d}x} - 2y = x^2.$$

(8)

Solution

Complementary function:

$$3m^2 - m - 2 = 0 \Rightarrow (3m + 2)(m - 1) = 0$$

 $\Rightarrow m = -\frac{2}{3} \text{ or } m = 1,$

and so we have

$$y = Ae^{-\frac{2}{3}x} + Be^x.$$

Particular integral: try

$$y = Cx^2 + Dx + E \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2Cx + D \Rightarrow \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = 2C.$$

Now,

$$3(2C) - (2Cx + D) - 2(Cx^{2} + Dx + E) \equiv x^{2}.$$

Solve:

$$\begin{array}{l} \underline{x^2} \colon -2C = 1 \Rightarrow C = -\frac{1}{2}. \\ \underline{x} \colon -2C - 2D = 0 \Rightarrow D = \frac{1}{2}. \\ \underline{\operatorname{constant}} \colon 6C - D - 2E = 0 \Rightarrow E = -\frac{7}{4}. \end{array}$$

Hence,

$$y = -\frac{1}{2}x^2 + \frac{1}{2}x - \frac{7}{4}.$$

General solution: The general solution is

$$y = Ae^{-\frac{2}{3}x} + Be^x - \frac{1}{2}x^2 + \frac{1}{2}x - \frac{7}{4}.$$

(b) Find the particular solution for which, at x = 0, y = 2 and $\frac{dy}{dx} = 3$. (6)

Solution

$$x=0,y=2\Rightarrow 2=A+B-rac{7}{4}\Rightarrow A+B=rac{15}{4}.$$

Now,

$$\frac{dy}{dx} = -\frac{2}{3}Ae^{-\frac{2}{3}x} + Be^x - x + \frac{1}{2}$$

and

$$3 = -\frac{2}{3}A + B + \frac{1}{2} \Rightarrow -\frac{2}{3}A + B = \frac{5}{2}.$$

Solve:

$$B = \frac{15}{4} - A \Rightarrow -\frac{2}{3}A + (\frac{15}{4} - A) = \frac{5}{2}$$
$$\Rightarrow -\frac{5}{3}A = -\frac{5}{4}$$
$$\Rightarrow A = \frac{3}{4}$$
$$\Rightarrow B = 3;$$

Hence, the particular solution is

$$y = \frac{3}{4}e^{-\frac{2}{3}x} + 3e^x - \frac{1}{2}x^2 + \frac{1}{2}x - \frac{7}{4}.$$

23. (a) Find, in terms of k, the general solution of the differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 4\frac{\mathrm{d}x}{\mathrm{d}t} + 3x = kt + 5,$$

(7)

where k is a constant and t > 0.

Solution

Complementary function:

$$m^{2} + 4m + 3 = 0 \Rightarrow (m+1)(m+3) = 0$$

 $\Rightarrow m = -1 \text{ or } m = -3,$

and so we have

$$x = Ae^{-3t} + Be^{-t}.$$

Particular integral: try try

$$x = Ct + D \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = C \Rightarrow \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = 0.$$

Now,

$$0 + 4C + 3(Ct + D) = kt + 5 \Rightarrow C = \frac{1}{3}k, D = \frac{5}{3} - \frac{4}{9}k.$$

General solution: The general solution is

$$x = Ae^{-3t} + Be^{-t} + \frac{1}{3}kt + \frac{5}{3} - \frac{4}{9}k.$$

For large values of t, this general solution may be approximated by a linear function.

(b) Given that k = 6, find the equation of this linear function.

Solution

$$k = 6 \Rightarrow x = Ae^{-3t} + Be^{-t} + 2t - 1$$

(2)

and hence the linear function is

$$\underline{x} \approx 2t - 1$$
.

24.

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} - 5y = 4\mathrm{e}^x.$$

(a) Show that $\lambda x e^x$ is a particular integral of the differential equation, where λ is a constant to be found.

Solution

Particular integral: try $y = \lambda x e^x$:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lambda x \mathrm{e}^x + \lambda \mathrm{e}^x$$
 and $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \lambda x \mathrm{e}^x + 2\lambda \mathrm{e}^x$.

Now,

$$[\lambda x + 2\lambda + 4(\lambda x + \lambda) - 5(\lambda x)] e^{x} = 4e^{x}$$

$$\Rightarrow \lambda x + 2\lambda + 4(\lambda x + \lambda) - 5(\lambda x) = 4$$

$$\Rightarrow 6\lambda = 4$$

$$\Rightarrow \lambda = \frac{2}{3}.$$

(b) Find general solution of the differential equation.

Solution

Complementary function:

$$m^{2} + 4m - 5 = 0 \Rightarrow (m+5)(m-1) = 0$$

 $\Rightarrow m = -5 \text{ or } m = 1,$

(4)

(5)

and so we have

$$y = Ae^{-5x} + Be^x.$$

General solution: The general solution is

$$y = Ae^{-5x} + Be^x + \frac{2}{3}xe^x.$$

(c) Find the particular solution for which $y = -\frac{2}{3}$ and $\frac{dy}{dx} = -\frac{4}{3}$ at x = 0.

Solution

$$x = 0, y = -\frac{2}{3} \Rightarrow -\frac{2}{3} = A + B + 0 \Rightarrow A + B = -\frac{2}{3}.$$

Now,

$$\frac{dy}{dx} = -5Ae^{-5x} + Be^x + \frac{2}{3}xe^x + \frac{2}{3}e^x$$

and

$$x = 0, \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{4}{3} \Rightarrow -\frac{4}{3} = -5A + B + \frac{2}{3} \Rightarrow -5A + B = -2.$$

Solve:

$$6A = \frac{4}{3} \Rightarrow A = \frac{2}{9}, B = -\frac{8}{9}$$

and the particular solution is

$$y = \frac{2}{9}e^{-5x} - \frac{8}{9}e^x + \frac{2}{3}xe^x.$$

25. Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 6\frac{\mathrm{d}x}{\mathrm{d}t} + 10x = \mathrm{e}^{-4t}.$$

(8)

(10)

Solution

Complementary function:

$$m^{2} + 6m + 10 = 0 \Rightarrow (m+3)^{2} + 1 = 0$$

 $\Rightarrow m = -3 \pm i$,

and so the complementary function is

$$x = e^{-3t} (A\cos t + B\sin t).$$

Particular integral: try $x = Ce^{-4t}$:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -4C\mathrm{e}^{-4t} \text{ and } \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = 16C\mathrm{e}^{-4t}.$$

Now,

$$(16C - 24C + 10C)e^{-4t} = e^{-4t} \Rightarrow 2C = 1 \Rightarrow C = \frac{1}{2}$$

and so the particular integral is $x = \frac{1}{2}e^{-4t}.$

$$x = \frac{1}{2}e^{-4t}$$
.

General solution: The general solution is

$$\underline{x = e^{-3t}(A\cos t + B\sin t) + \frac{1}{2}e^{-4t}}.$$

26. Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 6\frac{\mathrm{d}x}{\mathrm{d}t} + 9x = 5\cos t.$$

Solution

Complementary function:

$$m^2 + 6m + 9 = 0 \Rightarrow (m+3)^2 = 0 \Rightarrow m = -3 \text{ (only)}$$

and the complementary function is

$$x = (A + Bt)e^{-3t}.$$

Particular integral: try $x = C \cos t + D \sin t$:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -C\sin t + D\cos t \text{ or } \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -C\cos t - D\sin t.$$

Now,

$$\underline{\sin t}: \quad -D - 6C + 9D = 0 \Rightarrow -6C + 8D = 0$$

$$\cos t$$
: $-C + 6D + 9C = 5 \Rightarrow 8C + 6D = 5$.

Solve:

$$C = \frac{4}{3}D \Rightarrow \frac{50}{3}D = 5 \Rightarrow D = \frac{3}{10}, C = \frac{2}{5}$$

and we have

$$x = \frac{2}{5}\cos t + \frac{3}{10}\sin t.$$

General solution: The general solution is

$$x = (A + Bt)e^{-3t} + \frac{2}{5}\cos t + \frac{3}{10}\sin t.$$

27.

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 5\frac{\mathrm{d}x}{\mathrm{d}t} + 6x = 2\mathrm{e}^{-t}.$$

Given that x = 0 and $\frac{dx}{dt} = 2$ at t = 0,

(a) find x in terms of t.

Solution

Complementary function:

$$m^{2} + 5m + 6 = 0 \Rightarrow (m+2)(m+3) = 0$$

 $\Rightarrow m = -3 \text{ or } m = -2,$

(8)

and so we have

$$x = Ae^{-3t} + Be^{-2t}.$$

Particular integral: try $x = Ce^{-t}$:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -C\mathrm{e}^{-t} \text{ or } \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = C\mathrm{e}^{-t}.$$

Now,

$$(C - 5C + 6C)e^{-t} = 2e^{-t} \Rightarrow C = 1$$

and we have

$$x = e^{-t}$$
.

General solution: The general solution is

$$x = Ae^{-3t} + Be^{-2t} + e^{-t}$$
.

Particular solution:

$$x = 0, t = 0 \Rightarrow 0 = A + B + 1 \Rightarrow A + B = -1.$$

Now,

$$\frac{dx}{dt} = -3Ae^{-3t} - 2Be^{-2t} - e^{-t}$$

which means

$$x = 0, \frac{\mathrm{d}x}{\mathrm{d}t} = 2 \Rightarrow 2 = -3A - 2B - 1 \Rightarrow -3A - 2B = 3.$$

Solve:

$$B = -A - 1 \Rightarrow -3A - 2(-A - 1) = 3 \Rightarrow -A = 1 \Rightarrow A = -1, B = 0,$$

and we have

$$\underline{x = -e^{-3t} + e^{-t}}.$$

The particular solution in part (a) is used to model the motion of a particle P on the x-axis. At time t seconds, where $t \ge 0$, P is x metres from the origin O.

(b) Show that the maximum distance between O and P is $\frac{2\sqrt{3}}{9}$ m and justify that the distance is a maximum.

(7)

Solution

$$\frac{dx}{dt} = 0 \Rightarrow 3e^{-3t} - e^{-t} = 0$$

$$\Rightarrow e^{-3t}(3 - e^{2t}) = 0$$

$$\Rightarrow e^{2t} = 3$$

$$\Rightarrow t = \frac{1}{2}\ln 3.$$

Now,

$$x = -e^{-\frac{3}{2}\ln 3} + e^{-\frac{1}{2}\ln 3}$$

$$= e^{-\ln 3^{\frac{1}{2}}} - e^{\ln 3^{-\frac{3}{2}}}$$

$$= 3^{-\frac{1}{2}} - 3^{-\frac{3}{2}}$$

$$= \frac{1}{\sqrt{3}} - \frac{1}{3\sqrt{3}}$$

$$= \frac{2\sqrt{3}}{9}.$$

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -9\mathrm{e}^{-3t} + \mathrm{e}^{-t}$$

and

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2}\Big|_{x=\frac{1}{2}\ln 3} = -9\mathrm{e}^{-\frac{3}{2}\ln 3} + \mathrm{e}^{-\frac{1}{2}\ln 3} = -\frac{2\sqrt{3}}{3} < 0,$$

and this is a maximum.

28. (a) Find the value of λ for which $y = \lambda x \sin 5x$ is a particular integral of the differential equation (4)

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 25y = 3\cos 5x.$$

Solution

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lambda \sin 5x + 5\lambda x \cos 5x$$

and

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 5\lambda\cos 5x + 5\lambda x\cos 5x - 25\lambda x\sin 5x = 10\lambda\cos 5x - 25\lambda x\sin 5x.$$

Then

$$10\lambda \cos 5x - 25\lambda x \sin 5x + 25(\lambda x \sin 5x) = 3\cos 5x$$

$$\Rightarrow 10\lambda \cos 5x = 3\cos 5x$$

$$\Rightarrow \underline{\lambda = \frac{3}{10}}.$$

(b) Using your answer to part (a), the general solution of the differential equation

Solution

Complementary function:

$$m^2 + 25 = 0 \Rightarrow m = \pm 5i$$

and so we have the complementary function is

$$y = A\cos 5x + B\sin 5x.$$

General solution: The general solution is

$$y = A\cos 5x + B\sin 5x + \frac{3}{10}x\sin 5x.$$

Given that at x = 0, y = 0, and $\frac{dy}{dx} = 5$,

(c) find the particular solution of this differential equation, giving your solution in the form y = f(x). (5)

Solution

$$x = 0, y = 0 \Rightarrow 0 = A + 0 + 0 \Rightarrow A = 0.$$

Now,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 5B\cos 5x + \frac{3}{10}\sin 5x + \frac{3}{2}x\cos 5x$$

and

$$x = 0, \frac{\mathrm{d}y}{\mathrm{d}x} = 5 \Rightarrow 5 = 5B + 0 + 0 \Rightarrow B = 1.$$

Hence

$$y = \sin 5x + \frac{3}{10}x\sin 5x.$$

(2)

(d) Sketch the curve with equation y = f(x) for $0 \le x \le \pi$.

Solution

29. The differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 6\frac{\mathrm{d}x}{\mathrm{d}t} + 9x = \cos 3t, \ t \geqslant 0,$$

describes the motion of a particle along the x-axis.

(a) Find the general solution to this differential equation.

Solution

Complementary function:

$$m^2 + 6m + 9 = 0 \Rightarrow (m+3)^2 = 0 \Rightarrow m = -3 \text{ (only)}$$

(8)

and the complementary function is

$$x = (A + Bt)e^{-3t}.$$

Particular integral: try $x = C \cos 3t + D \sin 3t$:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -3C\sin 3t + 3D\cos 3t \text{ and } \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -9C\cos 3t - 9D\sin 3t.$$

Now,

$$\frac{\sin t}{\cos t}: -9D - 18C + 9D = 0 \Rightarrow C = 0,$$

$$\cos t: -9C + 18D + 9C = 1 \Rightarrow D = \frac{1}{18},$$

and this gives

$$x = \frac{1}{18}\sin 3t.$$

General solution: The general solution is

$$x = (A + Bt)e^{-3t} + \frac{1}{18}\sin 3t.$$

(b) Find the particular solution of this differential equation for which, at t = 0, $x = \frac{1}{2}$ (5) and $\frac{dx}{dt} = 0$.

Solution

$$x = \frac{1}{2}, t = 0 \Rightarrow \frac{1}{2} = A + 0 + 0 \Rightarrow A = \frac{1}{2}$$

Now,

$$\frac{dx}{dt} = (-3A + B - 3Bt)e^{-3t} + \frac{1}{6}\cos 3t$$

and

$$t = 0, \frac{\mathrm{d}x}{\mathrm{d}t} = 0 \Rightarrow 0 = -3A + B + \frac{1}{6} \Rightarrow B = \frac{4}{3}.$$

So we have

$$x = \left(\frac{1}{2} + \frac{4}{3}t\right)e^{-3t} + \frac{1}{18}\sin 3t.$$

On the graph of the particular solution defined in part (b), the first turning point for t > 30 is the point A.

(c) Find the approximate values for the coordinates of A.

Solution

Now,

$$\frac{dx}{dt} = (-3A + B - 3Bt)e^{-3t} + \frac{1}{6}\cos 3t$$

(2)

which means

$$\frac{\mathrm{d}x}{\mathrm{d}t} \approx \frac{1}{6}\cos 3t$$

and we want

$$\cos 3t = 0 \Rightarrow 3t = \frac{1}{2}\pi, \frac{3}{2}\pi, \dots, \frac{(2n-1)}{2}\pi, \dots$$

 $\Rightarrow t = \frac{1}{6}\pi, \frac{3}{6}\pi, \dots, \frac{(2n-1)}{6}\pi, \dots$

Now,

$$\frac{(2n-1)}{6}\pi > 30 \Rightarrow 2n - 1 > \frac{180}{\pi}$$

$$\Rightarrow 2n > \frac{180}{\pi} + 1$$

$$\Rightarrow n > \frac{1}{2} \left[\frac{180}{\pi} + 1 \right]$$

$$\Rightarrow n > 29.14788976 \text{ (FCD)},$$

so we take n = 30 which gives $\underline{t = \frac{59}{6}\pi}$ and

$$x = \left(\frac{1}{2} + \frac{4}{3}t\right)e^{-3\left(\frac{59\pi}{6}\right)} + \frac{1}{18}\sin 3\left(\frac{59\pi}{6}\right) \approx -\frac{1}{18}.$$

(9)

(5)

30. Find the general solution to the differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 5\frac{\mathrm{d}x}{\mathrm{d}t} + 6x = 2\cos t - \sin t.$$

Solution

Complementary function: The characteristic equation is

$$m^2 + 5m + 6 = 0 \Rightarrow (m+2)(m+3) = 0$$

 $\Rightarrow m = -2 \text{ or } m = -3$

and so the complementary function is $x = Ae^{-3t} + Be^{-2t}$.

Particular integral: try $x = C \cos t + D \sin t$:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -C\sin t + D\cos t \text{ and } \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -C\cos t - D\sin t.$$

Now,

$$\underline{\sin t}$$
: $-D - 5C + 6D = -1 \Rightarrow -5C + 5D = -1$,
 $\cos t$: $-C + 5D + 6C = 2 \Rightarrow 5C + 5D = 2$,

and this gives $C = \frac{3}{10}$, $D = \frac{1}{10}$. Thus,

$$x = \frac{3}{10}\cos t + \frac{1}{10}\sin t$$
.

General solution: The general solution is

$$\underline{x = Ae^{-3t} + Be^{-2t} + \frac{3}{10}\cos t + \frac{1}{10}\sin t}.$$

31. (a) Find the value of λ for which $\lambda t^2 e^{3t}$ is a particular integral of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 6\frac{\mathrm{d}y}{\mathrm{d}t} + 9y = 6\mathrm{e}^{3t}, t \geqslant 0.$$

Solution

Particular integral:

$$\frac{dy}{dt} = 2\lambda t e^{3t} + 3\lambda t^2 e^{3t}, \frac{d^2y}{dt^2} = 2\lambda e^{3t} + 12\lambda t e^{3t} + 9\lambda t^2 e^{3t}$$

If we substitute into the differential equation and compare coefficients:

 $t^2 e^{3t}$: $9\lambda - 18\lambda + 9\lambda = 0$ (and this tells us nothing)

 te^{3t} : $12\lambda - 12\lambda = 0$ (and this, again, tells us nothing)

(3)

 $e^{3t}: 2\lambda = 6 \Rightarrow \underline{\lambda} = 3.$

(b) Hence find the general solution of the differential equation.

Solution

Complementary function: The characteristic equation is

$$m^2 - 6m + 9 = 0 \Rightarrow (m - 3)^2 = 0$$

and so the complementary function is $y = e^{3t}(A + Bt)$.

General solution: Hence the general solution is

$$\underline{y = e^{3t}(A + Bt + 3t^2)}.$$

Given that when t = 0, y = 5 and $\frac{dy}{dt} = 4$,

(c) find the particular solution of this differential equation, giving your solution in the form y = f(t).

Solution

 $t = 0, y = 5 \Rightarrow A = 5.$

$$\frac{dy}{dt} = 3e^{3t}(5 + Bt + 3t^2) + e^{3t}(B + 6t)$$

and so

$$t = 0, \frac{\mathrm{d}y}{\mathrm{d}t} = 4 \Rightarrow 15 + B = 4 \Rightarrow B = -11.$$

Hence the particular solution is

$$y = e^{3t}(5 - 11t + 3t^2).$$

32. (a) Show that the transformation y = vx transforms the equation

$$4x^{2}\frac{d^{2}y}{dx^{2}} - 8x\frac{dy}{dx} + (8+4x^{2})y = x^{4} \qquad (\dagger)$$

(6)

(6)

into the equation

$$4\frac{\mathrm{d}^2 v}{\mathrm{d}x^2} + 4v = x. \qquad (\ddagger)$$

Solution

$$y = vx \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = v + x \frac{\mathrm{d}v}{\mathrm{d}x}$$

and

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\frac{\mathrm{d}v}{\mathrm{d}x} + x\frac{\mathrm{d}^2 v}{\mathrm{d}x^2}.$$

Substitute into (†):

$$4x^{2} \left(2\frac{\mathrm{d}v}{\mathrm{d}x} + x\frac{\mathrm{d}^{2}v}{\mathrm{d}x^{2}}\right) - 8x\left(v + x\frac{\mathrm{d}v}{\mathrm{d}x}\right) + (8 + 4x^{2})(vx) = x^{4}$$

$$\Rightarrow 8x^{2}\frac{\mathrm{d}v}{\mathrm{d}x} + 4x^{3}\frac{\mathrm{d}^{2}v}{\mathrm{d}x^{2}} - 8vx - 8x^{2}\frac{\mathrm{d}v}{\mathrm{d}x} + 8vx + 4vx^{3} = x^{4}$$

$$\Rightarrow 4x^{3}\frac{\mathrm{d}^{2}v}{\mathrm{d}x^{2}} + 4vx^{3} = x^{4}$$

$$\Rightarrow 4\frac{\mathrm{d}^{2}v}{\mathrm{d}x^{2}} + 4v = x.$$

(b) Solve the differential equation (\ddagger) to find v as a function of x.

Solution

Complementary function: The characteristic equation is

$$4m^2 + 4 = 0 \Rightarrow m = \pm i$$

and so the complementary function is

$$v = A\sin x + B\cos x.$$

Particular integral: For the particular solution, try v = Cx + D:

$$\frac{\mathrm{d}v}{\mathrm{d}x} = C, \frac{\mathrm{d}^2v}{\mathrm{d}x^2} = 0$$

and substitute:

$$0 + 4(Cx + D) \equiv x \Rightarrow C = \frac{1}{4}, D = 0.$$

General solution: Hence the general solution of (‡) is

$$v = A\sin x + B\cos x + \frac{1}{4}x.$$

(c) Hence state the general solution of the differential equation (†).

(1)

Solution

$$\underline{y = x(A\sin x + B\cos x + \frac{1}{4}x)}.$$

33. (a) Show that the substitution $x = e^z$ transforms the differential equation

(7)

$$x^{2} \frac{d^{2}y}{dx^{2}} + 2x \frac{dy}{dx} - 2y = 3 \ln x, x > 0, \qquad (\dagger)$$

into the equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}z^2} + \frac{\mathrm{d}y}{\mathrm{d}z} - 2y = 3z. \tag{\ddagger}$$

Solution

This is a standard substitution and you need to know how to do this both correctly and quickly:

$$\frac{\mathrm{d}y}{\mathrm{d}z} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}z} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \mathrm{e}^z = x\frac{\mathrm{d}y}{\mathrm{d}x}$$

and

$$\frac{\mathrm{d}^2 y}{\mathrm{d}z^2} = \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{\mathrm{d}y}{\mathrm{d}z} \right) = \frac{\mathrm{d}}{\mathrm{d}z} \left(x \frac{\mathrm{d}y}{\mathrm{d}x} \right)$$

$$= \frac{\mathrm{d}}{\mathrm{d}x} \left(x \frac{\mathrm{d}y}{\mathrm{d}x} \right) \times \frac{\mathrm{d}x}{\mathrm{d}z}$$

$$= \left(\frac{\mathrm{d}y}{\mathrm{d}x} + x \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \right) \times x$$

$$= x \frac{\mathrm{d}y}{\mathrm{d}x} + x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}.$$

Hence we can rewrite (\dagger) as

$$x^{2} \frac{\mathrm{d}^{2} y}{\mathrm{d}x^{2}} + 2x \frac{\mathrm{d}y}{\mathrm{d}x} - 2y = 3\ln x \Rightarrow \left[x^{2} \frac{\mathrm{d}^{2} y}{\mathrm{d}x^{2}} + x \frac{\mathrm{d}y}{\mathrm{d}x} \right] + x \frac{\mathrm{d}y}{\mathrm{d}x} - 2y = 3\ln x$$
$$\Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{d}z^{2}} + \frac{\mathrm{d}y}{\mathrm{d}z} - 2y = 3\ln(e^{z})$$
$$\Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{d}z^{2}} + \frac{\mathrm{d}y}{\mathrm{d}z} - 2y = 3z.$$

(b) Find the general solution of the differential equation (‡).

Solution

Complementary function: The characteristic equation is

$$m^2 + m - 2 = 0 \Rightarrow (m+2)(m-1) = 0 \Rightarrow m = -2 \text{ or } 1$$

(6)

and hence the complementary function is

$$y = Ae^{-2z} + Be^z.$$

Particular integral: For the particular integral, try

$$y = Cz + D \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = C \Rightarrow \frac{\mathrm{d}^2y}{\mathrm{d}z^2} = 0$$

and substitute into (‡):

$$0 + C - 2(Cz + D) = 3z \Rightarrow C = -\frac{3}{2}, D = -\frac{3}{4}.$$

General solution: Hence the general solution is

$$y = Ae^{-2z} + Be^z - \frac{3}{2}z - \frac{3}{4}.$$

(c) Hence obtain the general solution of the differential equation (†) giving your answer in the form y = f(x).

Solution

$$y = Ae^{-2z} + Be^{z} - \frac{3}{2}z - \frac{3}{4}$$
$$= A(e^{z})^{-2} + B(e^{z}) - \frac{3}{2}z - \frac{3}{4}$$
$$= \underbrace{Ax^{-2} + Bx - \frac{3}{2}\ln x - \frac{3}{4}}_{A}.$$

34. (a) Find the general solution of the differential equation

 $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + 10y = 27\mathrm{e}^{-x}.$

(6)

Solution

Complementary function: The characteristic equation is

$$m^2 + 2m + 10 = 0 \Rightarrow m = -1 + 3i$$

and hence the complementary function is

$$y = e^{-x} (A\sin 3x + B\cos 3x).$$

Particular integral: For the particular integral, try $y = Ce^{-x}$:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -C\mathrm{e}^{-x}, \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = C\mathrm{e}^{-x}$$

and substitute this into the differential equation:

$$Ce^{-x} - 2Ce^{-x} + 10Ce^{-x} = 27e^{-x}$$

and hence C = 3. So the general solution is

$$y = e^{-x}(A\sin 3x + B\cos 3x) + 3e^{-x}.$$

(b) Find the particular solution that satisfies y = 0 and $\frac{dy}{dx} = 0$ when x = 0. (6)

Solution

$$x = 0 \Rightarrow B + 3 = 0 \Rightarrow B = -3.$$

$$\frac{dy}{dx} = -e^{-x}(A\sin 3x - 3\cos 3x) + e^{-x}(3A\cos 3x + 3\sin 3x) - 3e^{-x}$$

and so $\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow 3 + 3A - 3 = 0 \Rightarrow A = 0$. So the particular solution is

$$y = 3e^{-x}\cos 3x + 3e^{-x}.$$

35. (a) Show that the transformation $x = e^u$ transforms the differential equation

$$x^{2} \frac{d^{2}y}{dx^{2}} - 7x \frac{dy}{dx} + 16y = 2 \ln x, \ x > 0,$$
 (I)

(6)

into the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} - 8\frac{\mathrm{d}y}{\mathrm{d}u} + 16y = 2u \qquad \text{(II)}.$$

Solution

$$\frac{\mathrm{d}y}{\mathrm{d}u} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}u} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \mathrm{e}^u = x\frac{\mathrm{d}y}{\mathrm{d}x}$$

and

$$\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} = \frac{\mathrm{d}}{\mathrm{d}u} \left(\frac{\mathrm{d}y}{\mathrm{d}u} \right) = \frac{\mathrm{d}}{\mathrm{d}u} \left(x \frac{\mathrm{d}y}{\mathrm{d}u} \right)$$

$$= \frac{\mathrm{d}}{\mathrm{d}x} \left(x \frac{\mathrm{d}y}{\mathrm{d}x} \right) \times \frac{\mathrm{d}x}{\mathrm{d}u}$$

$$= \left(\frac{\mathrm{d}y}{\mathrm{d}x} + x \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \right) \times x$$

$$= x \frac{\mathrm{d}y}{\mathrm{d}x} + x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}.$$

Finally, $x = e^u$ and so $u = \ln x$. Hence

$$x^{2} \frac{d^{2}y}{dx^{2}} - 7x \frac{dy}{dx} + 16y = 2 \ln x$$

$$\Rightarrow \left(x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx}\right) - 8x \frac{dy}{dx} + 16y = 2 \ln x$$

$$\Rightarrow \frac{d^{2}y}{du^{2}} - 8 \frac{dy}{du} + 16y = 2u,$$

as required.

(b) Find the general solution of the differential equation (II), expressing y as a function (7)of u.

Solution

Complementary function: The auxiliary equation is

$$m^2 - 8m + 16 = 0 \Rightarrow (m - 4)^2 = 0 \Rightarrow m = 4$$

and hence the complementary function is

$$y = (A + Bu)e^{4u}.$$

Particular integral: For the particular integral, try

$$y = C + Du \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}u} = D \Rightarrow \frac{\mathrm{d}^2y}{\mathrm{d}u^2} = 0.$$

Substitute into the differential equation:

$$0 - 8D + 16(C + Du) = 2u \Rightarrow D = \frac{1}{8}, C = \frac{1}{16}.$$

So the particular integral is $y = \frac{1}{4} + \frac{1}{2}u$.

General solution: Hence the general solution is

$$y = (A + Bu)e^{4u} + \frac{1}{16} + \frac{1}{8}u.$$

(c) Hence obtain the general solution of the differential equation (I).

(1)

Solution

$$y = (A + B \ln x)e^{4 \ln x} + \frac{1}{16} + \frac{1}{8} \ln x = \frac{x^4(A + B \ln x) + \frac{1}{16} + \frac{1}{8} \ln x}{2}$$

36. (a) Show that the transformation $x = e^u$ transforms the differential equation

$$x^{2} \frac{\mathrm{d}^{2} y}{\mathrm{d}x^{2}} - 2x \frac{\mathrm{d}y}{\mathrm{d}x} + 2y = -x^{-2}, \ x > 0,$$
 (I)

into the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} - 3\frac{\mathrm{d}y}{\mathrm{d}u} + 2y = -\mathrm{e}^{-2u} \qquad \text{(II)}.$$

Solution

$$\frac{\mathrm{d}y}{\mathrm{d}u} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}u} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \mathrm{e}^u = x\frac{\mathrm{d}y}{\mathrm{d}x}$$

and

$$\frac{d^2 y}{du^2} = \frac{d}{du} \left(\frac{dy}{du} \right) = \frac{d}{du} \left(x \frac{dy}{du} \right)$$

$$= \frac{d}{dx} \left(x \frac{dy}{dx} \right) \times \frac{dx}{du}$$

$$= \left(\frac{dy}{dx} + x \frac{d^2 y}{dx^2} \right) \times x$$

$$= x \frac{dy}{dx} + x^2 \frac{d^2 y}{dx^2}.$$

Finally, $x = e^u$ and so $u = \ln x$. Hence

$$x^{2} \frac{\mathrm{d}^{2} y}{\mathrm{d}x^{2}} - 2x \frac{\mathrm{d}y}{\mathrm{d}x} + 2y = -x^{-2}$$

$$\Rightarrow \left(x^{2} \frac{\mathrm{d}^{2} y}{\mathrm{d}x^{2}} + x \frac{\mathrm{d}y}{\mathrm{d}x}\right) - 3x \frac{\mathrm{d}y}{\mathrm{d}x} + 2y = -(\mathrm{e}^{u})^{2}$$

$$\Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{d}u^{2}} - 3 \frac{\mathrm{d}y}{\mathrm{d}u} + 2y = -\mathrm{e}^{-2u},$$

as required.

(b) Find the general solution of the differential equation (II).

(6)

Solution

Complementary function: The characteristic equation is

$$m^{2} - 3m + 2 = 0 \Rightarrow (m - 1)(m - 2) = 0$$

 $\Rightarrow m = 1 \text{ or } m = 2$

and so the complementary function is $y = Ae^{u} + Be^{2u}$. Particular integral: try $y = Ce^{-2u}$:

$$\frac{\mathrm{d}y}{\mathrm{d}u} = -2C\mathrm{e}^{-2u}$$
 and $\frac{\mathrm{d}y}{\mathrm{d}u} = 4C\mathrm{e}^{-2u}$

and substitute into (‡):

$$(4C + 6C + 2C)e^{-2u} = -e^{-2u} \Rightarrow C = -\frac{1}{12}$$

and the particular integral is

$$y = -\frac{1}{12}e^{-2u}$$
.

General solution: Hence the general solution is

$$y = Ae^u + Be^{2u} - \frac{1}{12}e^{-2u}.$$

(c) Hence obtain the general solution of the differential equation (I) giving your answer in the form y = f(x).

(1)

(8)

Solution

$$y = Ae^{u} + Be^{2u} - \frac{1}{12}e^{-2u} = Ax + Bx^{2} - \frac{1}{12}x^{-2}.$$

37. (a) Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} = 26\sin 3x.$$

Solution

Complementary function: The characteristic equation is

$$m^2 - 2m = 0 \Rightarrow m(m-2) = 0 \Rightarrow m = 0 \text{ or } 2$$

and hence the complementary function is

$$y = A + Be^{2x}.$$

Particular integral: try $y = C \cos 3x + D \sin 3x$:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -3C\sin 3x + 3D\cos 3x \text{ and } \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = -9C\cos 3x - 9D\sin 3x.$$

Now,

$$\underline{\sin 3x}: \quad -9D + 6C = 26$$

$$\cos 3x : -9C - 6D = 0,$$

and this gives $C = \frac{4}{3}$ and D = -2. The particular integral is

$$y = \frac{4}{3}\cos 3x - 2\sin 3x.$$

General solution: Hence the general solution is

$$y = A + Be^{2x} + \frac{4}{3}\cos 3x - 2\sin 3x.$$

(b) Find the particular solution of this differential equation for which y = 0 and $\frac{dy}{dx} = 0$ (5) when x = 0.

Solution

$$x = 0, y = 0 \Rightarrow 0 = A + B + \frac{4}{3}$$

and

$$y = A + Be^{2x} + \frac{4}{3}\cos 3x - 2\sin 3x \Rightarrow \frac{dy}{dx} = 2Be^{2x} - 4\sin 3x - 6\cos 3x$$

 $\Rightarrow 0 = 2B - 6.$

Sove:

$$B = 3$$
 and $A = -\frac{13}{3}$

and the particular solution is

$$y = -\frac{13}{3} + 3e^{2x} + \frac{4}{3}\cos 3x - 2\sin 3x.$$