# Dr Oliver Mathematics Mathematics: Higher 2023 Paper 2: Calculator <br> 1 hour 30 minutes 

The total number of marks available is 65 .
You must write down all the stages in your working.

1. Triangle $P Q R$ has vertices $P(5,-1), Q(-2,8)$, and $R(13,3)$.

(a) Find the equation of the altitude from $P$.
(b) Calculate the angle that the side $P R$ makes with the positive direction of the $x$-axis.
2. Find the equation of the tangent to the curve with equation

$$
y=2 x^{5}-3 x
$$

at the point where $x=1$.
3. Find

$$
\int 7 \cos \left(4 x+\frac{1}{3} \pi\right) \mathrm{d} x
$$

4. The diagram shows the cubic graph of $y=\mathrm{f}(x)$, with stationary points at $(2,0)$ and $(0,-2)$.


Sketch the graph of $y=2 \mathrm{f}(-x)$.
5. A function, f , is defined by

$$
\begin{equation*}
\mathrm{f}(x)=(3-2 x)^{4}, \text { where } x \in \mathbb{R} . \tag{3}
\end{equation*}
$$

Calculate the rate of change of f when $x=4$.
6. A function $\mathrm{f}(x)$ is defined by

$$
\begin{equation*}
\mathrm{f}(x)=\frac{2}{x}+3, x>0 . \tag{3}
\end{equation*}
$$

Find the inverse function, $\mathrm{f}^{-1}(x)$.
7. Solve the equation

$$
\begin{equation*}
\sin x^{\circ}+2=3 \cos 2 x^{\circ} \tag{5}
\end{equation*}
$$

for $0 \leqslant x<360$.
8. The diagram shows part of the curve with equation

$$
\begin{equation*}
y=x^{3}-2 x^{2}-4 x+1 \tag{5}
\end{equation*}
$$

and the line with equation

$$
y=x-5 .
$$

The curve and the line intersect at the points where $x=-2$ and $x=1$.


Calculate the shaded area.
9. (a) Express
in the form

$$
\begin{equation*}
7 \cos x^{\circ}-3 \sin x^{\circ} \tag{4}
\end{equation*}
$$

$$
k \sin (x+a)^{\circ},
$$

where $k>0$ and $0<a<360$.
(b) Hence, or otherwise, find:
(i) the maximum value of $14 \cos x^{\circ}-6 \sin x^{\circ}$,
(ii) the value of $x$ for which it occurs where $0 \leqslant x<360$.
10. Determine the range of values of $x$ for which the function

$$
\begin{equation*}
\mathrm{f}(x)=2 x^{3}+9 x^{2}-24 x+6 \tag{4}
\end{equation*}
$$

is strictly decreasing.
11. Circle $C_{1}$ has equation

$$
(x-4)^{2}+(y+2)^{2}=37
$$

Circle $C_{2}$ has equation

$$
\begin{equation*}
x^{2}+y^{2}+2 x-6 y-7=0 . \tag{3}
\end{equation*}
$$

(a) Calculate the distance between the centres of $C_{1}$ and $C_{2}$.
(b) Hence, show that $C_{1}$ and $C_{2}$ intersect at two distinct points.
12. A curve, for which

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x^{3}+3 \tag{4}
\end{equation*}
$$

passes through the point $(-1,3)$.
Express $y$ in terms of $x$.
13. A patient is given a dose of medicine.

The concentration of the medicine in the patient's blood is modelled by where

$$
C_{t}=11 \mathrm{e}^{-0.0053 t}
$$

where

- $t$ is the time, in minutes, since the dose of medicine was given aand
- $C_{t}$ is the concentration of the medicine, in $\mathrm{mg} / \mathrm{l}$, at time $t$.
(a) Calculate the concentration of the medicine 30 minutes after the dose was given

The dose of medicine becomes ineffective when its concentration falls to $0.66 \mathrm{mg} / \mathrm{l}$.
(b) Calculate the time taken for this dose of the medicine to become ineffective.
14. A net of an open box is shown.

The box is a cuboid with height $h$ centimetres.
The base is a rectangle measuring $3 x$ centimetres by $2 x$ centimetres.

(a) (i) Express the area of the net, $A \mathrm{~cm}^{2}$, in terms of $h$ and $x$.
(ii) Given that $A=7200 \mathrm{~cm}^{2}$, show that the volume of the box, $V \mathrm{~cm}^{3}$, is given by

$$
\begin{equation*}
V=4320 x-\frac{18}{5} x^{3} \tag{4}
\end{equation*}
$$

(b) Determine the value of $x$ that maximises the volume of the box.
15. The line

$$
x+3 y=17
$$

is a tangent to a circle at the point $(2,5)$.


The centre of the circle lies on the $y$-axis.

Find the coordinates of the centre of the circle.

