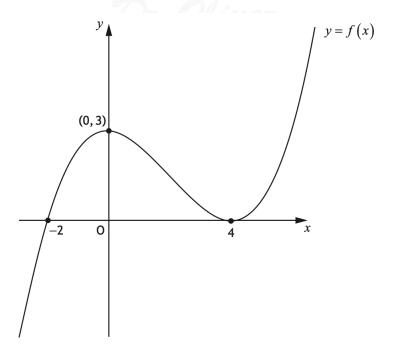
Dr Oliver Mathematics Mathematics: Higher 2025 Paper 1: Non-Calculator

1 hour 15 minutes

The total number of marks available is 55. You must write down all the stages in your working.

1. A curve has equation $y = x^3 - 2x^2 + 5. (4)$

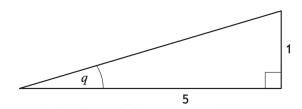
Find the equation of the tangent to this curve at the point where x=2.


2. Find the equation of the perpendicular bisector of the line joining A(1,4) and B(9,10). (4)

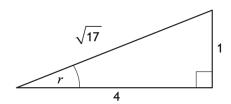
3. Find (4)

 $\int \left(\frac{12}{x^2} + x^{\frac{1}{2}}\right) \, \mathrm{d}x, \, x > 0.$

4. Evaluate $3\log_3 2 + \log_3 \frac{1}{24}$. (3)


5. The diagram shows the graph of y = f(x), with stationary points at (0,3) and (4,0).

Sketch the graph of


$$y = f(-x) + 3.$$

6. The diagram shows a right-angled triangle with angle q.

- (a) Determine the value of
 - (i) $\sin 2q$,
 - (ii) $\cos 2q$. (1)

A second right-angled triangle has angle r as shown.

- (b) Find the value of $\sin(2q r)$.
- 7. (a) Show that (x+3) is a factor of (2)

$$5x^3 + 16x^2 - x - 12.$$

(b) Hence, or otherwise, solve

$$5x^3 + 16x^2 - x - 12 = 0.$$

8. Given that

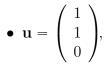
$$\log_a 75 = 2 + \log_a 3, \ a > 0, \tag{3}$$

(3)

(3)

(4)

find the value of a.


9. Find the coordinates of the points of intersection of the line with equation

$$y = x + 1$$

and the circle with equation

$$x^2 + y^2 - 2x + 6y - 15 = 0.$$

10. The vectors \mathbf{u} and \mathbf{v} are such that

- $\mathbf{v} = \begin{pmatrix} 1 \\ 3 \\ k \end{pmatrix}$, and
- the angle between \mathbf{u} and \mathbf{v} is 45° .

Find the value of k, where k > 0.

11. The equation

$$9x^2 + 3kx + k = 0$$

(5)

(4)

has two real and distinct roots.

Determine the range of values for k.

Justify your answer.

- 12. Given that (4)
 - $\frac{\mathrm{d}y}{\mathrm{d}x} = 6\cos x + 8\sin 2x$ and
 - y = 4 when $x = \frac{1}{6}\pi$,

express y in terms of x.

13. A function, f, is defined on the set of real numbers.

The derivative of f is

$$f'(x) = (x+5)(2-x).$$

(a) Find the x-coordinates of the stationary points on the curve with equation y = f(x) and determine their nature.

It is known that

- f is a cubic function.
- f(0) < 0.
- The equation f(x) = 0 has exactly one solution. The solution lies between -10 and 10.
- (b) Draw a sketch of a possible graph of y = f(x). (3)