Dr Oliver Mathematics Mathematics: Higher 2023 Paper 2: Calculator
 1 hour 30 minutes

The total number of marks available is 65 .
You must write down all the stages in your working.

1. Triangle $P Q R$ has vertices $P(5,-1), Q(-2,8)$, and $R(13,3)$.

(a) Find the equation of the altitude from P.

Solution

Well,

$$
\begin{aligned}
m_{Q R} & =\frac{3-8}{13-(-2)} \\
& =\frac{-5}{15} \\
& =-\frac{1}{3}
\end{aligned}
$$

and

$$
m_{\text {normal }}=-\frac{1}{-\frac{1}{3}}=3
$$

Finally, the equation of the altitude from P is

$$
\begin{aligned}
y-(-1)=3(x-5) & \Rightarrow y+1=3 x-15 \\
& \Rightarrow \underline{\underline{y=3 x-16} .}
\end{aligned}
$$

(b) Calculate the angle that the side $P R$ makes with the positive direction of the x-axis.

Solution

$$
\overrightarrow{P R}=\binom{8}{4}
$$

and

$$
\begin{aligned}
\text { angle } & =\tan ^{-1}\left(\frac{4}{8}\right) \\
& =26.56505118(\mathrm{FCD}) \\
& =26.6^{\circ}(3 \mathrm{sf})
\end{aligned}
$$

2. Find the equation of the tangent to the curve with equation

$$
y=2 x^{5}-3 x
$$

at the point where $x=1$.

Solution

$$
y=2 x^{5}-3 x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=10 x^{4}-3
$$

and

$$
\begin{aligned}
x=1 & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=10\left(1^{4}\right)-3 \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=7 .
\end{aligned}
$$

Now,

$$
x=1 \Rightarrow y=2\left(1^{5}\right)-3(1)=-1
$$

and, finally, the equation of the tangent is

$$
\begin{aligned}
y-(-1)=7(x-1) & \Rightarrow y+1=7 x-7 \\
& \Rightarrow \underline{y=7 x-8}
\end{aligned}
$$

3. Find

Solution

$$
\int 7 \cos \left(4 x+\frac{1}{3} \pi\right) \mathrm{d} x=\underline{\underline{\frac{7}{4} \sin \left(4 x+\frac{1}{3} \pi\right)+c}}
$$

4. The diagram shows the cubic graph of $y=\mathrm{f}(x)$, with stationary points at $(2,0)$ and $(0,-2)$.

Sketch the graph of $y=2 \mathrm{f}(-x)$.

5. A function, f , is defined by

$$
f(x)=(3-2 x)^{4}, \text { where } x \in \mathbb{R} .
$$

Calculate the rate of change of f when $x=4$.

Solution

$$
\begin{aligned}
\mathrm{f}(x)=(3-2 x)^{4} & \Rightarrow \mathrm{f}^{\prime}(x)=4(3-2 x)^{3} \times(-2) \\
& \Rightarrow \mathrm{f}^{\prime}(x)=-8(3-2 x)^{3}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{f}^{\prime}(4) & =-8[3-2(4)]^{3} \\
& =\underline{\underline{1000}} .
\end{aligned}
$$

6. A function $\mathrm{f}(x)$ is defined by

$$
\mathrm{f}(x)=\frac{2}{x}+3, x>0
$$

Find the inverse function, $\mathrm{f}^{-1}(x)$.

Solution

$$
\begin{aligned}
y=\frac{2}{x}+3 & \Rightarrow y-3=\frac{2}{x} \\
& \Rightarrow x=\frac{2}{y-3}
\end{aligned}
$$

and so the inverse function is

$$
\mathrm{f}^{-1}(x)=\frac{2}{\underline{\underline{x-3}}} .
$$

7. Solve the equation

$$
\begin{equation*}
\sin x^{\circ}+2=3 \cos 2 x^{\circ} \tag{5}
\end{equation*}
$$

for $0 \leqslant x<360$.

Solution

$$
\begin{aligned}
\sin x^{\circ}+2=3 \cos 2 x^{\circ} & \Rightarrow \sin x^{\circ}+2=3\left(1-2 \sin ^{2} x^{\circ}\right) \\
& \Rightarrow \sin x^{\circ}+2=3-6 \sin ^{2} x^{\circ} \\
& \Rightarrow 6 \sin ^{2} x^{\circ}+\sin x^{\circ}-1=0
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{lc}
\text { add to: } & +1 \\
\text { multiply to: } & (+6) \times(-1)=-6
\end{array}\right\}+3,-2 \\
& \Rightarrow 6 \sin ^{2} x^{\circ}+3 \sin x^{\circ}-2 \sin x^{\circ}-1=0 \\
& \Rightarrow 3 \sin x^{\circ}\left(2 \sin x^{\circ}+1\right)-1\left(2 \sin x^{\circ}+1\right)=0 \\
& \Rightarrow\left(3 \sin x^{\circ}-1\right)\left(2 \sin x^{\circ}+1\right)=0 \\
& \Rightarrow 3 \sin x^{\circ}-1=0 \text { or } 2 \sin x^{\circ}+1=0 \\
& \Rightarrow \sin x^{\circ}=\frac{1}{3} \text { or } \sin x^{\circ}=-\frac{1}{2} \text {. } \\
& \underline{\sin x^{\circ}=\frac{1}{3}} \\
& \sin x^{\circ}=\frac{1}{3} \Rightarrow x=19.47122063,160.5287794(\mathrm{FCD}) \\
& \Rightarrow x=19.5,161(3 \mathrm{sf}) . \\
& \underline{\sin x^{\circ}=-\frac{1}{2}}: \\
& \sin x^{\circ}=-\frac{1}{2} \Rightarrow \underline{\underline{x=210,330}} .
\end{aligned}
$$

8. The diagram shows part of the curve with equation

$$
\begin{equation*}
y=x^{3}-2 x^{2}-4 x+1 \tag{5}
\end{equation*}
$$

and the line with equation

$$
y=x-5 .
$$

The curve and the line intersect at the points where $x=-2$ and $x=1$.

Calculate the shaded area.

Solution

$$
\begin{aligned}
\text { Shaded area } & =\int_{-2}^{1}\left[\left(x^{3}-2 x^{2}-4 x+1\right)-(x-5)\right] \mathrm{d} x \\
& =\int_{-2}^{1}\left(x^{3}-2 x^{2}-5 x+6\right) \mathrm{d} x \\
& =\left[\frac{1}{4} x^{4}-\frac{2}{3} x^{3}-\frac{5}{2} x^{2}+6 x\right]_{x=-1}^{2} \\
& =\left(\frac{1}{4}-\frac{2}{3}-\frac{5}{2}+12\right)-\left(4+\frac{16}{3}-10-6\right) \\
& =9 \frac{1}{12}-\left(-6 \frac{2}{3}\right) \\
& =\underline{\underline{15 \frac{3}{4}}} .
\end{aligned}
$$

9. (a) Express

$$
7 \cos x^{\circ}-3 \sin x^{\circ}
$$

in the form

$$
k \sin (x+a)^{\circ},
$$

where $k>0$ and $0<a<360$.

Solution

Well,

$$
\begin{aligned}
7 \cos x^{\circ}-3 \sin x^{\circ} & =k \sin (x+a)^{\circ} \\
& =k \sin x^{\circ} \cos a^{\circ}+k \cos x^{\circ} \sin a^{\circ}
\end{aligned}
$$

and

$$
k \sin a^{\circ}=7 \text { and } k \cos a^{\circ}=-3
$$

Now,

$$
\begin{aligned}
k & =\sqrt{7^{2}+(-3)^{2}} \\
& =\sqrt{49+9} \\
& =\sqrt{58} .
\end{aligned}
$$

Next,

$$
\begin{aligned}
\tan a^{\circ} & =\frac{k \sin a^{\circ}}{k \cos a^{\circ}} \\
& =-\frac{7}{3}
\end{aligned}
$$

and

$$
\begin{aligned}
a^{\circ} & =\tan ^{-1}\left(-\frac{7}{3}\right) \\
& =-66.80140949^{\circ}(\text { not in range }), 113.1955905(\mathrm{FCD}) .
\end{aligned}
$$

Finally,

$$
7 \cos x^{\circ}-3 \sin x^{\circ}=\underline{\underline{\sqrt{58}} \sin (x+113)^{\circ}(3 \mathrm{sf})} .
$$

(b) Hence, or otherwise, find:
(i) the maximum value of $14 \cos x^{\circ}-6 \sin x^{\circ}$,

Solution

Well,

$$
\begin{aligned}
14 \cos x^{\circ}-6 \sin x^{\circ} & =2\left(7 \cos x^{\circ}-3 \sin x^{\circ}\right) \\
& =2 \sqrt{58} \sin (x-66.8)^{\circ} ;
\end{aligned}
$$

so, the maximum value is

$$
\underline{\underline{2 \sqrt{58}}} .
$$

(ii) the value of x for which it occurs where $0 \leqslant x<360$.

Solution

The value for x when it occurs is

$$
\begin{aligned}
x+113.195 \ldots=90 & \Rightarrow x=-23.19859051(\text { not in range }) \\
& \Rightarrow x=336.8014095(\mathrm{FCD}) \\
& \Rightarrow x=337(3 \mathrm{sf}) .
\end{aligned}
$$

10. Determine the range of values of x for which the function

$$
\begin{equation*}
\mathrm{f}(x)=2 x^{3}+9 x^{2}-24 x+6 \tag{4}
\end{equation*}
$$

is strictly decreasing.

Solution

$$
\mathrm{f}(x)=2 x^{3}+9 x^{2}-24 x+6 \Rightarrow \mathrm{f}^{\prime}(x)=6 x^{2}+18 x-24
$$

and

$$
\begin{aligned}
\mathrm{f}^{\prime}(x)=0 & \Rightarrow 6 x^{2}+18 x-24=0 \\
& \Rightarrow 6\left(x^{2}+3 x-4\right)=0
\end{aligned}
$$

$$
\left.\begin{array}{lc}
\text { add to: } & +3 \\
\text { multiply to: } & =-4
\end{array}\right\}+4,-1
$$

$$
\begin{aligned}
& \Rightarrow 6\left[x^{2}+4 x-x-4\right]=0 \\
& \Rightarrow 6[x(x+4)-1(x+4)]=0 \\
& \Rightarrow 6(x-1)(x+4)=0 \\
& \Rightarrow x-1=0 \text { or } x+4=0 \\
& \Rightarrow x=1 \text { or } x=-4
\end{aligned}
$$

We need a 'table of signs':

	$x<-4$	$x=-4$	$-4<x<1$	$x=1$	$x>1$
$x+4$	-	0	+	+	+
$x-1$	-	-	-	0	+
$\mathrm{f}^{\prime}(x)$	+	0	-	0	+

Finally, the range of values of x for which the function $\mathrm{f}(x)$ is strictly decreasing is

$$
-4<x<1 \text {. }
$$

11. Circle C_{1} has equation

$$
(x-4)^{2}+(y+2)^{2}=37
$$

Circle C_{2} has equation

$$
\begin{equation*}
x^{2}+y^{2}+2 x-6 y-7=0 \tag{3}
\end{equation*}
$$

(a) Calculate the distance between the centres of C_{1} and C_{2}.

Solution

Circle C_{2} :

$$
\begin{align*}
x^{2}+y^{2}+2 x-6 y-7=0 & \Rightarrow x^{2}+2 x+y^{2}-6 y=7 \\
& \Rightarrow\left(x^{2}+2 x+1\right)+\left(y^{2}-6 y+9\right)=7+1+9 \\
& \Rightarrow(x+1)^{2}+(y-3)^{2}=17 . \tag{1}
\end{align*}
$$

Hence, C_{1} has centre $(4,-2)$ and C_{2} has centre $(-1,3)$.
So, the distance between the centres of C_{1} and C_{2} will be

$$
\begin{aligned}
\text { distance } & =\sqrt{[4-(-1)]^{2}+[-2-3]^{2}} \\
& =\sqrt{5^{2}+[-5]^{2}} \\
& =\sqrt{50} \\
& =\underline{\underline{5 \sqrt{2}}} .
\end{aligned}
$$

(b) Hence, show that C_{1} and C_{2} intersect at two distinct points.

Solution

Well,

$$
\begin{aligned}
\sqrt{37}+\sqrt{17} & =10.20 \ldots \\
\text { distance } & =7.07 \ldots \\
\sqrt{37}-\sqrt{17} & =1.95 \ldots ;
\end{aligned}
$$

hence, C_{1} and C_{2} intersect at two distinct points.
12. A curve, for which
passes through the point $(-1,3)$.
Express y in terms of x.

Solution

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x^{3}+3 \Rightarrow y=2 x^{4}+3 x+c
$$

for some constant c. Now,

$$
\begin{aligned}
x=-1, y=3 & \Rightarrow 3=2\left[(-1)^{4}\right]+3(-1)+c \\
& \Rightarrow 3=2-3+c \\
& \Rightarrow c=4 .
\end{aligned}
$$

Hence,

$$
y=2 x^{4}+3 x+4 .
$$

13. A patient is given a dose of medicine.

The concentration of the medicine in the patient's blood is modelled by where

$$
C_{t}=11 \mathrm{e}^{-0.0053 t}
$$

where

- t is the time, in minutes, since the dose of medicine was given aand
- C_{t} is the concentration of the medicine, in mg / l, at time t.
(a) Calculate the concentration of the medicine 30 minutes after the dose was given

Solution

$$
\begin{aligned}
t=30 & \Rightarrow C_{30}=11 \mathrm{e}^{-0.0053 \times 30} \\
& \Rightarrow C_{30}=11 \mathrm{e}^{-0.159} \\
& \Rightarrow C_{30}=9.382959949(\mathrm{FCD}) \\
& \Rightarrow C_{30}=9.38 \mathrm{mg} / \mathrm{l}(3 \mathrm{sf}) .
\end{aligned}
$$

The dose of medicine becomes ineffective when its concentration falls to $0.66 \mathrm{mg} / \mathrm{l}$.
(b) Calculate the time taken for this dose of the medicine to become ineffective.

Solution

$$
\begin{aligned}
11 \mathrm{e}^{-0.0053 t}=0.66 & \Rightarrow \mathrm{e}^{-0.0053 t}=0.06 \\
& \Rightarrow-0.0053 t=\ln 0.06 \\
& \Rightarrow t=-\frac{\ln 0.06}{0.0053} \\
& \Rightarrow t=530.83221007(\mathrm{FCD}) \\
& \Rightarrow t=531 \operatorname{mins}(3 \mathrm{sf}) .
\end{aligned}
$$

14. A net of an open box is shown.

The box is a cuboid with height h centimetres.

The base is a rectangle measuring $3 x$ centimetres by $2 x$ centimetres.

(a) (i) Express the area of the net, $A \mathrm{~cm}^{2}$, in terms of h and x.

Solution

Well,

$$
\begin{aligned}
A & =(2 x \times 3 x)+2(2 x \times h)+2(3 x \times h) \\
& =6 x^{2}+4 h x+6 h x \\
& =\underline{\underline{\left(6 x^{2}+10 h x\right) \mathrm{cm}^{2}} .}
\end{aligned}
$$

(ii) Given that $A=7200 \mathrm{~cm}^{2}$, show that the volume of the box, $V \mathrm{~cm}^{3}$, is given by

$$
V=4320 x-\frac{18}{5} x^{3}
$$

Solution

$$
\begin{aligned}
6 x^{2}+10 h x=7200 & \Rightarrow 10 h x=7200-6 x^{2} \\
& \Rightarrow h=\frac{720}{x}-\frac{3}{5} x
\end{aligned}
$$

and

$$
\begin{aligned}
V & =h(2 x)(3 x) \\
& =6 x^{2}\left[\frac{720}{x}-\frac{3}{5} x\right] \\
& =4320 x-\frac{18}{5} x^{3},
\end{aligned}
$$

as required.
(b) Determine the value of x that maximises the volume of the box.

Solution

$$
V=4320 x-\frac{18}{5} x^{3} \Rightarrow \frac{\mathrm{~d} V}{\mathrm{~d} x}=4320-\frac{54}{5} x^{2}
$$

and

$$
\begin{aligned}
\frac{\mathrm{d} V}{\mathrm{~d} x}=0 & \Rightarrow 4320-\frac{54}{5} x^{2}=0 \\
& \Rightarrow \frac{54}{5} x^{2}=4320 \\
& \Rightarrow x^{2}=400 \\
& \Rightarrow \underline{\underline{x}=20} .
\end{aligned}
$$

We need a 'table of signs':

	$x<20$	$x=20$	$x>20$
$V^{\prime}(x)$	+	0	-

So the stationary point is a maximum.
15. The line

$$
\begin{equation*}
x+3 y=17 \tag{4}
\end{equation*}
$$

is a tangent to a circle at the point $(2,5)$.

The centre of the circle lies on the y-axis.
Find the coordinates of the centre of the circle.

Solution

Let the centre of the circle be $(0, a)$ (why do we know the x-coordinate is 0 ?).
Find another point on the line $x+3 y=17:(5,4)$ will do.
Now,

$$
\begin{aligned}
m_{\text {tangent }} & =\frac{4-5}{5-2} \\
& =-\frac{1}{3}
\end{aligned}
$$

and

$$
\begin{aligned}
m_{\text {radius }} & =\frac{5-a}{2-0} \\
& =\frac{5-a}{2}
\end{aligned}
$$

Now, the product of the two gradients is -1 :

$$
\begin{aligned}
-1=-\frac{1}{3} \times \frac{5-a}{2} & \Rightarrow 3=\frac{5-a}{2} \\
& \Rightarrow 6=5-a \\
& \Rightarrow a=-1 .
\end{aligned}
$$

Hence, the coordinates of the centre of the circle are

$$
\underline{\underline{(0,-1)}} .
$$

