# Dr Oliver Mathematics Mathematics: Higher 2023 Paper 2: Calculator

## 1 hour 30 minutes

The total number of marks available is 65. You must write down all the stages in your working.

1. Triangle PQR has vertices P(5,-1), Q(-2,8), and R(13,3).



(a) Find the equation of the altitude from P.

### Solution

Well,

$$m_{QR} = \frac{3 - 8}{13 - (-2)}$$
$$= \frac{-5}{15}$$
$$= -\frac{1}{3}$$

(3)

(2)

and

$$m_{\text{normal}} = -\frac{1}{-\frac{1}{3}} = 3.$$

Finally, the equation of the altitude from P is

$$y - (-1) = 3(x - 5) \Rightarrow y + 1 = 3x - 15$$
  
 $\Rightarrow y = 3x - 16.$ 

(b) Calculate the angle that the side PR makes with the positive direction of the x-axis.

### Solution

 $\overrightarrow{PR} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$ 

and

angle = 
$$\tan^{-1}(\frac{4}{8})$$
  
= 26.565 051 18 (FCD)  
=  $26.6^{\circ}$  (3 sf).

(4)

(2)

2. Find the equation of the tangent to the curve with equation

$$y = 2x^5 - 3x$$

at the point where x = 1.

### Solution

 $y = 2x^5 - 3x \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 10x^4 - 3$ 

and

$$x = 1 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 10(1^4) - 3$$
$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 7.$$

Now,

$$x = 1 \Rightarrow y = 2(1^5) - 3(1) = -1$$

and, finally, the equation of the tangent is

$$y - (-1) = 7(x - 1) \Rightarrow y + 1 = 7x - 7$$
$$\Rightarrow \underline{y = 7x - 8}.$$

### 3. Find

$$\int 7\cos(4x + \frac{1}{3}\pi) \,\mathrm{d}x.$$

Solution

$$\int 7\cos(4x + \frac{1}{3}\pi) \, dx = \frac{\frac{7}{4}\sin(4x + \frac{1}{3}\pi) + c}{\frac{1}{4}\sin(4x + \frac{1}{3}\pi) + c}.$$

4. The diagram shows the cubic graph of y = f(x), with stationary points at (2,0) and (0,-2).



Sketch the graph of y = 2 f(-x).



5. A function, f, is defined by

 $f(x) = (3 - 2x)^4$ , where  $x \in \mathbb{R}$ .

(3)

Calculate the rate of change of f when x = 4.

### Solution

$$f(x) = (3 - 2x)^4 \Rightarrow f'(x) = 4(3 - 2x)^3 \times (-2)$$
$$\Rightarrow f'(x) = -8(3 - 2x)^3$$

and

$$f'(4) = -8[3 - 2(4)]^3$$
  
=  $\underline{1000}$ .

6. A function f(x) is defined by

$$f(x) = \frac{2}{x} + 3, \ x > 0.$$

(3)

(5)

Find the inverse function,  $f^{-1}(x)$ .

Solution

$$y = \frac{2}{x} + 3 \Rightarrow y - 3 = \frac{2}{x}$$
$$\Rightarrow x = \frac{2}{y - 3}$$

and so the inverse function is

$$f^{-1}(x) = \frac{2}{\underline{x-3}}.$$

7. Solve the equation

$$\sin x^{\circ} + 2 = 3\cos 2x^{\circ}$$

for  $0 \le x < 360$ .

Solution

$$\sin x^{\circ} + 2 = 3\cos 2x^{\circ} \Rightarrow \sin x^{\circ} + 2 = 3(1 - 2\sin^{2}x^{\circ})$$
$$\Rightarrow \sin x^{\circ} + 2 = 3 - 6\sin^{2}x^{\circ}$$
$$\Rightarrow 6\sin^{2}x^{\circ} + \sin x^{\circ} - 1 = 0$$

add to: 
$$+1$$
  
multiply to:  $(+6) \times (-1) = -6$   $+3, -2$   

$$\Rightarrow 6\sin^2 x^\circ + 3\sin x^\circ - 2\sin x^\circ - 1 = 0$$

⇒ 6 sin 
$$x^{2} + 3 \sin x^{2} - 2 \sin x^{2} - 1 = 0$$
  
⇒  $3 \sin x^{\circ} (2 \sin x^{\circ} + 1) - 1(2 \sin x^{\circ} + 1) = 0$   
⇒  $(3 \sin x^{\circ} - 1)(2 \sin x^{\circ} + 1) = 0$   
⇒  $3 \sin x^{\circ} - 1 = 0$  or  $2 \sin x^{\circ} + 1 = 0$   
⇒  $\sin x^{\circ} = \frac{1}{3}$  or  $\sin x^{\circ} = -\frac{1}{2}$ .

(5)

$$\sin x^{\circ} = \frac{1}{3}$$
:

$$\sin x^{\circ} = \frac{1}{3} \Rightarrow x = 19.47122063, 160.5287794 \text{ (FCD)}$$
  
$$\Rightarrow \underline{x = 19.5, 161 (3 \text{ sf})}.$$

$$\sin x^\circ = -\frac{1}{2}$$
:

$$\sin x^{\circ} = -\frac{1}{2} \Rightarrow \underline{x = 210, 330}.$$

8. The diagram shows part of the curve with equation

$$y = x^3 - 2x^2 - 4x + 1$$

and the line with equation y = x - 5.

$$y = x - 5.$$

The curve and the line intersect at the points where x = -2 and x = 1.



Calculate the shaded area.

### Solution

Shaded area = 
$$\int_{-2}^{1} \left[ (x^3 - 2x^2 - 4x + 1) - (x - 5) \right] dx$$
= 
$$\int_{-2}^{1} (x^3 - 2x^2 - 5x + 6) dx$$
= 
$$\left[ \frac{1}{4}x^4 - \frac{2}{3}x^3 - \frac{5}{2}x^2 + 6x \right]_{x=-1}^{2}$$
= 
$$\left( \frac{1}{4} - \frac{2}{3} - \frac{5}{2} + 12 \right) - \left( 4 + \frac{16}{3} - 10 - 6 \right)$$
= 
$$9 \frac{1}{12} - \left( -6 \frac{2}{3} \right)$$
= 
$$15 \frac{3}{4}$$
.

$$7\cos x^{\circ} - 3\sin x^{\circ}$$

(4)

in the form

$$k\sin(x+a)^{\circ},$$

where k > 0 and 0 < a < 360.

### Solution

Well,

$$7\cos x^{\circ} - 3\sin x^{\circ} = k\sin(x+a)^{\circ}$$
$$= k\sin x^{\circ}\cos a^{\circ} + k\cos x^{\circ}\sin a^{\circ}$$

and

$$k \sin a^{\circ} = 7$$
 and  $k \cos a^{\circ} = -3$ .

Now,

$$k = \sqrt{7^2 + (-3)^2}$$

$$= \sqrt{49 + 9}$$

$$= \sqrt{58}.$$

Next,

$$\tan a^{\circ} = \frac{k \sin a^{\circ}}{k \cos a^{\circ}}$$
$$= -\frac{7}{3}$$

and

$$a^{\circ} = \tan^{-1}(-\frac{7}{3})$$
  
= -66.801 409 49° (not in range), 113.195 590 5 (FCD).

Finally,

$$7\cos x^{\circ} - 3\sin x^{\circ} = \sqrt{58}\sin(x+113)^{\circ} (3 \text{ sf}).$$

(b) Hence, or otherwise, find:

(i) the maximum value of  $14\cos x^{\circ} - 6\sin x^{\circ}$ ,

### Solution

Well,

$$14\cos x^{\circ} - 6\sin x^{\circ} = 2(7\cos x^{\circ} - 3\sin x^{\circ})$$
$$= 2\sqrt{58}\sin(x - 66.8)^{\circ};$$

(1)

so, the maximum value is

$$2\sqrt{58}$$

(ii) the value of x for which it occurs where  $0 \le x < 360$ .

Solution

The value for x when it occurs is

$$x + 113.195... = 90 \Rightarrow x = -23.19859051 \text{ (not in range)}$$
  
 $\Rightarrow x = 336.8014095 \text{ (FCD)}$   
 $\Rightarrow x = 337 \text{ (3 sf)}.$ 

(2)

(4)

10. Determine the range of values of x for which the function

$$f(x) = 2x^3 + 9x^2 - 24x + 6$$

is strictly decreasing.

Solution

$$f(x) = 2x^3 + 9x^2 - 24x + 6 \Rightarrow f'(x) = 6x^2 + 18x - 24$$

and

$$f'(x) = 0 \Rightarrow 6x^2 + 18x - 24 = 0$$
  
 $\Rightarrow 6(x^2 + 3x - 4) = 0$ 

add to: 
$$+3$$
 multiply to:  $=-4$   $+3$   $+4$ ,  $-1$ 

$$\Rightarrow 6[x^{2} + 4x - x - 4] = 0$$

$$\Rightarrow 6[x(x+4) - 1(x+4)] = 0$$

$$\Rightarrow 6(x-1)(x+4) = 0$$

$$\Rightarrow x - 1 = 0 \text{ or } x + 4 = 0$$

$$\Rightarrow x = 1 \text{ or } x = -4.$$

We need a 'table of signs':

|       | x < -4 | x = -4 | -4 < x < 1   | x = 1 | x > 1 |
|-------|--------|--------|--------------|-------|-------|
| x+4   | _      | 0      | +            | +     | +     |
| x-1   |        | _      | 3/:          | 0     | +     |
| f'(x) | +      | 0      | w <u>e</u> r | 0     | +     |

Finally, the range of values of x for which the function f(x) is strictly decreasing is

$$-4 < x < 1.$$

11. Circle  $C_1$  has equation

$$(x-4)^2 + (y+2)^2 = 37.$$

Circle  $C_2$  has equation

$$x^2 + y^2 + 2x - 6y - 7 = 0.$$

(a) Calculate the distance between the centres of  $C_1$  and  $C_2$ .

(3)

Solution

Circle  $C_2$ :

$$x^{2} + y^{2} + 2x - 6y - 7 = 0 \Rightarrow x^{2} + 2x + y^{2} - 6y = 7$$
$$\Rightarrow (x^{2} + 2x + 1) + (y^{2} - 6y + 9) = 7 + 1 + 9$$
$$\Rightarrow (x + 1)^{2} + (y - 3)^{2} = 17. \quad (1)$$

Hence,  $C_1$  has centre (4, -2) and  $C_2$  has centre (-1, 3).

So, the distance between the centres of  $C_1$  and  $C_2$  will be

distance = 
$$\sqrt{[4 - (-1)]^2 + [-2 - 3]^2}$$
  
=  $\sqrt{5^2 + [-5]^2}$   
=  $\sqrt{50}$   
=  $\underline{5\sqrt{2}}$ .

(b) Hence, show that  $C_1$  and  $C_2$  intersect at two distinct points.

(3)

Solution

Well,

$$\sqrt{37} + \sqrt{17} = 10.20...$$
  
distance = 7.07...  
 $\sqrt{37} - \sqrt{17} = 1.95...;$ 

hence,  $C_1$  and  $C_2$  intersect at <u>two distinct points</u>.

12. A curve, for which

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 8x^3 + 3,\tag{4}$$

(1)

passes through the point (-1,3).

Express y in terms of x.

### Solution

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 8x^3 + 3 \Rightarrow y = 2x^4 + 3x + c,$$

for some constant c. Now,

$$x = -1, y = 3 \Rightarrow 3 = 2[(-1)^4] + 3(-1) + c$$
  
 $\Rightarrow 3 = 2 - 3 + c$   
 $\Rightarrow c = 4.$ 

Hence,

$$y = 2x^4 + 3x + 4.$$

13. A patient is given a dose of medicine.

The concentration of the medicine in the patient's blood is modelled by where

$$C_t = 11e^{-0.0053t},$$

where

- $\bullet$  t is the time, in minutes, since the dose of medicine was given and
- $C_t$  is the concentration of the medicine, in mg/l, at time t.
- (a) Calculate the concentration of the medicine 30 minutes after the dose was given

Solution

$$t = 30 \Rightarrow C_{30} = 11e^{-0.005 \, 3 \times 30}$$
  
 $\Rightarrow C_{30} = 11e^{-0.159}$   
 $\Rightarrow C_{30} = 9.382 \, 959 \, 949 \, (FCD)$   
 $\Rightarrow C_{30} = 9.38 \, \text{mg/l} \, (3 \, \text{sf}).$ 

The dose of medicine becomes ineffective when its concentration falls to 0.66 mg/l.

(b) Calculate the time taken for this dose of the medicine to become ineffective.

Solution  $11e^{-0.005 3t} = 0.66 \Rightarrow e^{-0.005 3t} = 0.06$   $\Rightarrow -0.005 3t = \ln 0.06$   $\Rightarrow t = -\frac{\ln 0.06}{0.005 3}$   $\Rightarrow t = 530.832 210 07 \text{ (FCD)}$   $\Rightarrow \underline{t = 531 \text{ mins } (3 \text{ sf})}.$ 

(3)

(1)

14. A net of an open box is shown.

The box is a cuboid with height h centimetres.

The base is a rectangle measuring 3x centimetres by 2x centimetres.



(a) (i) Express the area of the net,  $A \text{ cm}^2$ , in terms of h and x.

Solution Well,  $A = (2x \times 3x) + 2(2x \times h) + 2(3x \times h)$  $= 6x^2 + 4hx + 6hx$  $= (6x^2 + 10hx) \text{ cm}^2.$ 

(ii) Given that  $A=7\,200~{\rm cm^2},$  show that the volume of the box,  $V~{\rm cm^3},$  is given by

 $V = 4320x - \frac{18}{5}x^3.$ 

### Solution

$$6x^{2} + 10hx = 7200 \Rightarrow 10hx = 7200 - 6x^{2}$$
  
$$\Rightarrow h = \frac{720}{x} - \frac{3}{5}x$$

and

$$V = h(2x)(3x)$$

$$= 6x^{2} \left[ \frac{720}{x} - \frac{3}{5}x \right]$$

$$= 4320x - \frac{18}{5}x^{3},$$

as required.

### (b) Determine the value of x that maximises the volume of the box.

### Solution

$$V = 4320x - \frac{18}{5}x^3 \Rightarrow \frac{dV}{dx} = 4320 - \frac{54}{5}x^2$$

and

$$\frac{\mathrm{d}V}{\mathrm{d}x} = 0 \Rightarrow 4320 - \frac{54}{5}x^2 = 0$$
$$\Rightarrow \frac{54}{5}x^2 = 4320$$
$$\Rightarrow x^2 = 400$$
$$\Rightarrow x = 20.$$

We need a 'table of signs':

So the stationary point is a maximum.

### 15. The line

 $x + 3y = 17 \tag{4}$ 

(4)

is a tangent to a circle at the point (2,5).



The centre of the circle lies on the y-axis.

Find the coordinates of the centre of the circle.

### Solution

Let the centre of the circle be (0, a) (why do we know the x-coordinate is 0?).

Find another point on the line x + 3y = 17: (5,4) will do.

Now,

$$m_{\text{tangent}} = \frac{4-5}{5-2}$$
$$= -\frac{1}{3}$$

and

$$m_{\text{radius}} = \frac{5 - a}{2 - 0}$$
$$= \frac{5 - a}{2}.$$

Now, the product of the two gradients is -1:

$$-1 = -\frac{1}{3} \times \frac{5-a}{2} \Rightarrow 3 = \frac{5-a}{2}$$
$$\Rightarrow 6 = 5 - a$$
$$\Rightarrow a = -1.$$

Hence, the coordinates of the centre of the circle are

$$(0,-1)$$