Dr Oliver Mathematics Mathematics: Higher 2011 Paper 2: Calculator

1 hour 10 minutes

The total number of marks available is 60. You must write down all the stages in your working.

1. OABCD is a square based pyramid as shown in the diagram below.

O is the origin, D is the point (2,2,6), and OA = 4 units. M is the mid-point of OA.

(a) State the coordinates of B.

(1)

(3)

Solution B(4,4,0).

(b) Express \overrightarrow{DB} and \overrightarrow{DM} in component form.

$$\overrightarrow{DB} = \overrightarrow{DO} + \overrightarrow{OB}$$

$$= \begin{pmatrix} -2 \\ -2 \\ -6 \end{pmatrix} + \begin{pmatrix} 4 \\ 4 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ 2 \\ -6 \end{pmatrix}$$

and

$$\overrightarrow{DM} = \overrightarrow{DO} + \overrightarrow{OM}$$

$$= \begin{pmatrix} -2 \\ -2 \\ -6 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ -2 \\ -6 \end{pmatrix}.$$

(c) Find the size of angle BDM.

(5)

Solution

$$\overrightarrow{DB} \cdot \overrightarrow{DM} = DB \cdot DM \cdot \cos BDM$$

$$\Rightarrow 0 - 4 + 36 = \sqrt{2^2 + 2^2 + 6^2} \cdot \sqrt{0^2 + 2^2 + 6^2} \cdot \cos BDM$$

$$\Rightarrow 32 = \sqrt{44} \cdot \sqrt{40} \cdot \cos BDM$$

$$\Rightarrow \cos BDM = \frac{4\sqrt{110}}{55}$$

$$\Rightarrow \angle BDM = 40.290 986 39 \text{ (FCD)}$$

$$\Rightarrow \angle BDM = 40.3^{\circ} \text{ (1 dp)}.$$

2. Functions f, g, and h are defined on the set of real numbers by

$$f(x) = x^3 - 1$$
$$g(x) = 3x + 1$$
$$h(x) = 4x - 5.$$

(a) Find g(f(x)).

(2)

$$g(f(x)) = g(x^3 - 1)$$
$$= 3(x^3 - 1) + 1$$
$$= 3x^3 - 2.$$

(b) Show that

$$g(f(x)) + x h(x) = 3x^3 + 4x^2 - 5x - 2.$$
 (1)

(5)

Solution

$$g(f(x)) + x h(x) = (3x^3 - 2) + x(4x - 5)$$
$$= (3x^3 - 2) + (4x^2 - 5x)$$
$$= 3x^3 + 4x^2 - 5x - 2,$$

as required.

(c) (i) Show that (x-1) is a factor of

$$3x^3 + 4x^2 - 5x - 2.$$

Solution

We use synthetic division:

As the remainder is 0, (x-1) is a <u>factor</u> of the cubic.

(ii) Factorise

$$3x^3 + 4x^2 - 5x - 2$$

fully.

(d) Hence solve

$$g(f(x)) + x h(x) = 0.$$
(1)

Solution

$$g(f(x)) + x h(x) = 0 \Rightarrow (x - 1)(3x + 1)(x + 2) = 0$$

 $\Rightarrow \underline{x = 1, x = -\frac{1}{3}, \text{ or } x = -2.}$

3. A sequence is defined by

$$u_{n+1} = -\frac{1}{2}u_n$$
 with $u_0 = -16$.

(a) Write down the values of u_1 and u_2 .

(1)

Solution

$$u_1 = -\frac{1}{2} \times -16 = \underline{\underline{8}}.$$

 $u_2 = -\frac{1}{2} \times 8 = \underline{-4}.$

A second sequence is given by $4, 5, 7, 11, \ldots$

It is generated by the recurrence relation

$$v_{n+1} = pv_n + q \text{ with } v_1 = 4.$$

(b) Find the values of p and q.

(3)

Solution

We take the first and the second terms:

$$4p + q = 5 \quad (1)$$

$$4p + q = 5$$
 (1)
 $5p + q = 7$ (2).

Now, (2) - (1):

$$\underline{\underline{p=2}} \Rightarrow 8+q=5$$

$$\Rightarrow \underline{q=-3}.$$

$$\Rightarrow \underline{q = -3}$$
.

Either the sequence in (a) or the sequence in (b) has a limit.

(c) (i) Calculate this limit. (3)

Solution

The sequence in (a) has a limit of $\underline{0}$.

(ii) Why does the other sequence not have a limit?

Solution

The sequence in (b) is <u>divergent</u>.

4. The diagram shows the curve with equation

$$y = x^3 - x^2 - 4x + 4$$

(10)

and the line with equation

$$y = 2x + 4.$$

The curve and the line intersect at the points (-2,0), (0,4), and (3,10).

Calculate the total shaded area.

Dr Oliver

Area =
$$\int_{-2}^{0} \left[(x^3 - x^2 - 4x + 4) - (2x + 4) \right] dx$$

$$+ \int_{0}^{3} \left[(2x + 4) - (x^3 - x^2 - 4x + 4) \right] dx$$

$$= \int_{-2}^{0} (x^3 - x^2 - 6x) dx + \int_{0}^{3} (6x + x^2 - x^3) dx$$

$$= \left[\frac{1}{4}x^4 - \frac{1}{3}x^3 - 3x^2 \right]_{x=-2}^{0} + \left[3x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 \right]_{x=0}^{3}$$

$$= \left[(0 - 0 + 0) - (4 + \frac{8}{3} - 12) \right] + \left[(27 + 9 - \frac{81}{4}) - (0 - 0 + 0) \right]$$

$$= 5\frac{1}{3} + 15\frac{3}{4}$$

$$= 21\frac{1}{21}.$$

5. Variables x and y are related by the equation

$$y = kx^n$$
.

(5)

The graph of $\log_2 y$ against $\log_2 x$ is a straight line through the points (0,5) and (4,7), as shown in the diagram.

Find the values of k and n.

Gradient =
$$\frac{7-5}{4-0}$$

= $\frac{1}{2}$

and the equation is

$$\log_2 y - 5 = \frac{1}{2} (\log_2 x - 0) \Rightarrow \log_2 y - 5 = \frac{1}{2} \log_2 x$$

$$\Rightarrow \log_2 y - 5 = \log_2 x^{\frac{1}{2}}$$

$$\Rightarrow \log_2 y - \log_2 x^{\frac{1}{2}} = 5$$

$$\Rightarrow \log_2 \left(\frac{y}{x^{\frac{1}{2}}}\right) = 5$$

$$\Rightarrow \frac{y}{x^{\frac{1}{2}}} = 2^5$$

$$\Rightarrow y = 32x^{\frac{1}{2}};$$

hence, $\underline{\underline{k} = 32}$ and $\underline{\underline{n} = \frac{1}{2}}$.

6. (a) The expression

$$3\sin x - 5\cos x$$

(4)

can be written in the form

$$R\sin(x+a)$$

where R > 0 and $0 \le a < 2\pi$.

Calculate the values of R and a.

Solution

$$R\sin(x+a) \equiv R\sin x \cos a + R\cos x \sin a$$

and hence

$$R\cos a = 3$$
 and $R\sin a = -5$.

Now,

$$R = \sqrt{(R\sin a)^2 + (R\cos a)^2}$$
$$= \sqrt{(-5)^2 + 3^2}$$
$$= \sqrt{34}$$

Dr Oliver

and

$$\tan a = \frac{R \sin a}{R \cos a} \Rightarrow \tan a = -\frac{5}{3}$$

 $\Rightarrow a = -1.030\,376\,827 \text{ (no - because the angle is negative)}$
 $\Rightarrow a = 2.111\,215\,827 \text{ (no - because the sine is positive)}$
 $\Rightarrow a = \underline{5.252\,808\,481 \text{ (yes)}}.$

(b) Hence find the value of t, where $0 \le t \le 2$, for which

$$\int_0^t (3\cos x + 5\sin x) \, \mathrm{d}x = 3.$$

(7)

(9)

Solution

$$\int_{0}^{t} (3\cos x + 5\sin x) \, dx = 3 \Rightarrow [3\sin x - 5\cos x]_{x=0}^{t} = 3$$

$$\Rightarrow (3\sin t - 5\cos t) - (0 - 5) = 3$$

$$\Rightarrow 3\sin t - 5\cos t + 5 = 3$$

$$\Rightarrow 3\cos t - 5\sin t = -2$$

$$\Rightarrow \sqrt{34}\sin(x + 5.252...) = -2$$

$$\Rightarrow \sin(x + 5.252...) = -\frac{2}{\sqrt{34}}$$

$$\Rightarrow x + 5.252... = -0.3501057778 \text{ (no)}$$

$$\Rightarrow x + 5.252... = 4.17196948 \text{ (no)}$$

$$\Rightarrow x + 5.252... = 5.93307929 \text{ (yes)}$$

$$\Rightarrow x = 0.6802710488 \text{ (FCD)}$$

$$\Rightarrow x = 0.68 (2 \text{ dp}).$$

7. Circle C_1 has equation

$$(x+1)^2 + (y-1)^2 = 121.$$

A circle C_2 with equation

$$x^2 + y^2 - 4x + 6y + p = 0$$

is drawn inside C_1 .

The circles have no points of contact.

What is the range of values of p?

Dr Oliver

Solution

The circle C_1 has centre A(-1,1) and radius 11. Now,

$$x^{2} + y^{2} - 4x + 6y + p = 0 \Rightarrow x^{2} - 4x + y^{2} + 6y = -p$$
$$\Rightarrow (x^{2} - 4x + 4) + (y^{2} + 6y + 9) = 4 + 9 - p$$
$$\Rightarrow (x - 2)^{2} + (y + 3)^{2} = 13 - p$$

which means that the circle C_2 has centre B(2,-3) and radius $\sqrt{13-p}$. Now,

$$\sqrt{13-p} > 0 \Rightarrow 13-p > 0 \Rightarrow p < 13.$$

Next,

$$AB = \sqrt{3^2 + 4^2}$$
$$= 5.$$

Let C be the point at which AB extended meets C_1 . So

$$BC < 6 \Rightarrow \sqrt{13 - p} < 6$$
$$\Rightarrow 13 - p < 36$$
$$\Rightarrow p > -22.$$

Finally, the range of values of p is

$$-22 .$$

