# Dr Oliver Mathematics <br> Further Mathematics: Further Pure Mathematics 2 (Paper 4A) <br> November 2021: Calculator <br> 1 hour 30 minutes 

The total number of marks available is 75 .
You must write down all the stages in your working. Inexact answers should be given to three significant figures unless otherwise stated.

1. Without performing any division, explain why

$$
\begin{equation*}
n=20210520 \tag{4}
\end{equation*}
$$

is divisible by 66 .
2. A binary operation $\star$ on the set of non-negative integers, $\mathbb{Z}_{0}^{+}$, is defined by

$$
\begin{equation*}
m \star n=|m-n|, m, n \in \mathbb{Z}_{0}^{+} . \tag{1}
\end{equation*}
$$

(a) Explain why $\mathbb{Z}_{0}^{+}$is closed under the operation $\star$.
(b) Show that 0 is an identity for $\left(\mathbb{Z}_{0}^{+}, \star\right)$.
(c) Show that all elements of $\mathbb{Z}_{0}^{+}$have an inverse under $\star$.
(d) Determine if $\mathbb{Z}_{0}^{+}$forms a group under $\star$, giving clear justification for your answer.
3. (a) Use the Euclidean Algorithm to find integers $a$ and $b$ such that

$$
\begin{equation*}
125 a+87 b=1 \tag{5}
\end{equation*}
$$

(b) Hence write down a multiplicative inverse of 87 modulo 125 .
(c) Solve the linear congruence

$$
\begin{equation*}
87 x \equiv 16(\bmod 125) . \tag{2}
\end{equation*}
$$

4. Let $G$ be a group of order $46^{46}+47^{47}$.

Using Fermat's Little Theorem and explaining your reasoning, determine which of the following are possible orders for a subgroup of $G$
(a) 11 ,
(b) 21 .
5. The point $P$ in the complex plane represents a complex number $z$ such that

$$
|z+9|=4|z-12 \mathrm{i}|
$$

Given that, as $z$ varies, the locus of $P$ is a circle,
(a) determine the centre and radius of this circle.
(b) Shade on an Argand diagram the region defined by the set

$$
\begin{equation*}
\{z \in \mathbb{C}:|z+9|<4|z-12 \mathrm{i}|\} \cap\left\{z \in \mathbb{C}:-\frac{1}{4} \pi<\arg \left(z-\frac{1}{5}(3+44 \mathrm{i})\right)<\frac{1}{4} \pi\right\} \tag{4}
\end{equation*}
$$

6. A recurrence system is defined by

$$
\begin{align*}
u_{n+2} & =9(n+1)^{2} u_{n}-3 u_{n+1}, n \geqslant 1,  \tag{6}\\
u_{1} & =-3, \text { and } \\
u_{2} & =18 .
\end{align*}
$$

Prove by induction that, for $n \in \mathbb{N}$,

$$
u_{n}=(-3)^{n} n!
$$

7. 

$$
\begin{equation*}
I_{n}=\int t^{n} \sqrt{4+5 t^{2}} \mathrm{~d} t \tag{5}
\end{equation*}
$$

(a) Show that, for $n>1$,

$$
I_{n}=\frac{t^{n-1}}{5(n+2)}\left(4+5 t^{2}\right)^{\frac{3}{2}}-\frac{4(n-1)}{5(n+2)} I_{n-2} .
$$

The curve shown in Figure 1 is defined by the parametric equations

$$
x=\frac{1}{\sqrt{5}} t^{5}, y=\frac{1}{2} t^{4}, 0 \leqslant t \leqslant 1 .
$$



Figure 1: $x=\frac{1}{\sqrt{5}} t^{5}, y=\frac{1}{2} t^{4}$

This curve is rotated through $2 \pi$ radians about the $x$-axis to form a hollow open shell.
(b) Show that the external surface area of the shell is given by

$$
\begin{equation*}
\pi \int_{0}^{1} t^{7} \sqrt{4+5 t^{2}} \mathrm{~d} t \tag{5}
\end{equation*}
$$

(c) determine the value of the external surface area of the shell, giving your answer to 3 significant figures.
8.

$$
\mathbf{A}=\left(\begin{array}{ccc}
5 & -2 & 5 \\
0 & 3 & p \\
-6 & 6 & -4
\end{array}\right)
$$

Given that

$$
\left(\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right)
$$

is an eigenvector for $\mathbf{A}$,
(a) (i) determine the eigenvalue corresponding to this eigenvector,
(ii) hence show that $p=2$,
(iii) determine the remaining eigenvalues and corresponding eigenvectors of $\mathbf{A}$.
(b) Write down a matrix $\mathbf{P}$ and a diagonal matrix $\mathbf{D}$ such that

$$
\begin{equation*}
\mathbf{A}=\mathbf{P D P}^{-1} \tag{1}
\end{equation*}
$$

(c) (i) Solve the differential equation

$$
\begin{equation*}
\dot{u}=k u, \tag{2}
\end{equation*}
$$

where $k$ is a constant.
With respect to a fixed origin $O$, the velocity of a particle moving through space is modelled by

$$
\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right)=\mathbf{A}\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) .
$$

By considering

$$
\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=\mathbf{P}^{-1}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

so that

$$
\left(\begin{array}{c}
\dot{u}  \tag{4}\\
\dot{v} \\
\dot{w}
\end{array}\right)=\mathbf{P}^{-1}\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right),
$$

(ii) determine a general solution for the displacement of the particle.

