

Dr Oliver Mathematics
Cambridge O Level Additional Mathematics
2007 November Paper 2: Calculator
2 hours

The total number of marks available is 80.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. You must write down all the stages in your working.

1. The two variables x and y are related by the equation

$$yx^2 = 800.$$

- (a) Obtain an expression for $\frac{dy}{dx}$ in terms of x . (2)

Solution

$$\begin{aligned} yx^2 = 800 &\Rightarrow y = 800x^{-2} \\ &\Rightarrow \underline{\underline{\frac{dy}{dx} = -1600x^{-3}}}. \end{aligned}$$

- (b) Hence find the approximate change in y as x increases from 10 to $10 + p$, where p is small. (2)

Solution

$$\begin{aligned} \delta y &= \frac{dy}{dx} \times \delta x \\ &= \frac{-1600}{10^3} p \\ &= \underline{\underline{-1.6p}}. \end{aligned}$$

2. Solve the equation (5)

$$3 \sin\left(\frac{1}{2}x - 1\right) = 1,$$

for $0 < x < 6\pi$ radians.

Solution

Now,

$$\begin{aligned}
 3 \sin\left(\frac{1}{2}x - 1\right) &= 1 \\
 \Rightarrow \sin\left(\frac{1}{2}x - 1\right) &= \frac{1}{3} \\
 \Rightarrow \frac{1}{2}x - 1 &= 0.339\,836\,909\,5, 2.801\,755\,744 \text{ (FCD)} \\
 \Rightarrow \frac{1}{2}x &= 1.339\,836\,909\,5, 1.801\,755\,744 \text{ (FCD)} \\
 \Rightarrow x &= 2.679\,673\,819, 7.603\,511\,488 \text{ (FCD)} \\
 \Rightarrow x &= \underline{\underline{2.68, 7.60}} \text{ (3 sf).}
 \end{aligned}$$

3. (a) Express

(1)

as a power of 3.

Solution

$$\begin{aligned}
 9^{x+1} &= (3^2)^{x+1} \\
 &= \underline{\underline{3^{2(x+1)}}}.
 \end{aligned}$$

(b) Express

(1)

as a power of 3.

Solution

$$\begin{aligned}
 \sqrt[3]{27^{2x}} &= ((3^3)^{2x})^{\frac{1}{3}} \\
 &= \underline{\underline{3^{2x}}}.
 \end{aligned}$$

(c) Express

(3)

$$\frac{54 \times \sqrt[3]{27^{2x}}}{9^{x+1} + 216(3^{2x-1} - 1)}$$

as a fraction in its simplest form.

Solution

$$\frac{54 \times \sqrt[3]{27^{2x}}}{9^{x+1} + 216(3^{2x-1} - 1)} = \frac{54 \times 3^{2x}}{3^{2x+2} + 216(3^{2x-1})}$$

divide top and bottom by 3^{2x-1} :

$$\begin{aligned} &= \frac{54 \times 3}{3^3 + 216} \\ &= \frac{162}{27 + 216} \\ &= \frac{162}{243} \\ &= \frac{2}{3}. \end{aligned}$$

4. A cycle shop sells three models of racing cycles, A , B , and C .

The table below shows the numbers of each model sold over a four-week period and the cost of each model in £.

	A	B	C
1	8	12	4
2	7	10	2
3	10	12	0
4	6	8	4
Cost, £	300	500	800

In the first two weeks the shop banked 30% of all money received, but in the last two weeks the shop only banked 20% of all money received.

(a) Write down three matrices such that matrix multiplication will give the total amount of money banked over the four-week period. (2)

Solution

E.g.,

$$\begin{pmatrix} 0.3 & 0.3 & 0.2 & 0.2 \end{pmatrix} \begin{pmatrix} 8 & 12 & 4 \\ 7 & 10 & 2 \\ 10 & 12 & 0 \\ 6 & 8 & 4 \end{pmatrix} \begin{pmatrix} 300 \\ 500 \\ 800 \end{pmatrix}.$$

(b) Hence evaluate this total amount.

(4)

Solution

Well,

$$\begin{aligned} & \begin{pmatrix} 0.3 & 0.3 & 0.2 & 0.2 \end{pmatrix} \begin{pmatrix} 8 & 12 & 4 \\ 7 & 10 & 2 \\ 10 & 12 & 0 \\ 6 & 8 & 4 \end{pmatrix} \begin{pmatrix} 300 \\ 500 \\ 800 \end{pmatrix} \\ &= \begin{pmatrix} 0.3 & 0.3 & 0.2 & 0.2 \end{pmatrix} \begin{pmatrix} 11600 \\ 8700 \\ 9000 \\ 9000 \end{pmatrix} \\ &= (9690) \end{aligned}$$

and the amount is £9 690.

5. (a) Expand

(1)

$$(1 + x)^5.$$

Solution

$$\begin{aligned} (1 + x)^5 &= 1^5 + \binom{5}{1}(1)^4(x) + \binom{5}{2}(1)^3(x)^2 + \binom{5}{3}(1)^2(x)^3 + \binom{5}{4}(1)(x)^4 + (x)^5 \\ &= 1 + 5x + 10x^2 + 10x^3 + 5x^4 + x^5. \end{aligned}$$

(b) Hence express

(3)

$$(1 + \sqrt{2})^5$$

in the form

$$a + b\sqrt{2},$$

where a and b are integers.

Solution

$$\begin{aligned} (1 + \sqrt{2})^5 &= 1 + 5(\sqrt{2}) + 10(\sqrt{2})^2 + 10(\sqrt{2})^3 + 5(\sqrt{2})^4 + (\sqrt{2})^5 \\ &= (1 + 20 + 20) + (5 + 20 + 4)\sqrt{2} \\ &= \underline{41 + 29\sqrt{2}}; \end{aligned}$$

hence, $a = 41$ and $b = 29$.

(c) Obtain the corresponding result for (2)

$$(1 - \sqrt{2})^5$$

and hence evaluate

$$(1 + \sqrt{2})^5 + (1 - \sqrt{2})^5.$$

Solution

$$\begin{aligned}(1 - \sqrt{2})^5 &= 1 - 5(\sqrt{2}) + 10(\sqrt{2})^2 - 10(\sqrt{2})^3 + 5(\sqrt{2})^4 - (\sqrt{2})^5 \\ &= (1 + 20 + 20) - (5 + 20 + 4)\sqrt{2} \\ &= \underline{\underline{41 - 29\sqrt{2}}}\end{aligned}$$

and

$$\begin{aligned}(1 + \sqrt{2})^5 + (1 - \sqrt{2})^5 &= 41 + 29\sqrt{2} + (41 - 29\sqrt{2}) \\ &= \underline{\underline{82}}.\end{aligned}$$

6. Two circular flower beds have a combined area of $\frac{29}{2}\pi \text{ m}^2$. (6)

The sum of the circumferences of the two flower beds is $10\pi \text{ m}$.

Determine the radius of each flower bed.

Solution

Well, let the radii be r and R m. Then

$$\pi r^2 + \pi R^2 = \frac{29}{2}\pi \Rightarrow r^2 + R^2 = \frac{29}{2} \quad (1)$$

and

$$\begin{aligned}2\pi r + 2\pi R &= 10\pi \Rightarrow 2(r + R) = 10 \\ &\Rightarrow r + R = 5 \\ &\Rightarrow R = 5 - r \quad (2).\end{aligned}$$

Now, insert (2) into (1):

$$\begin{aligned}
 r^2 + (5 - r)^2 &= \frac{29}{2} \Rightarrow r^2 + (25 - 10r + r^2) = \frac{29}{2} \\
 &\Rightarrow 2r^2 - 10r + 25 = \frac{29}{2} \\
 &\Rightarrow 4r^2 - 20r + 50 = 29 \\
 &\Rightarrow 4r^2 - 20r + 21 = 0
 \end{aligned}$$

add to: $\begin{array}{c} -20 \\ \hline \end{array}$
 multiply to: $\begin{array}{c} (+4) \times (+21) = +84 \\ \hline \end{array}$ } $-14, -6$

e.g.,

$$\begin{aligned}
 &\Rightarrow 4r^2 - 14r - 6r + 21 = 0 \\
 &\Rightarrow 2r(2r - 7) - 3(2r - 7) = 0 \\
 &\Rightarrow (2r - 3)(2r - 7) = 0 \\
 &\Rightarrow 2r - 3 = 0 \text{ or } 2r - 7 = 0 \\
 &\Rightarrow r = 1\frac{1}{2} \text{ or } r = 3\frac{1}{2}.
 \end{aligned}$$

7. The position vectors of points A and B , relative to an origin O , are $2\mathbf{i} + 4\mathbf{j}$ and $6\mathbf{i} + 10\mathbf{j}$ respectively.

The position vector of C , relative to O , is $k\mathbf{i} + 25\mathbf{j}$, where k is a positive constant.

(a) Find the value of k for which the length of BC is 25 units.

(3)

Solution

Well,

$$\begin{aligned}
 25^2 &= (k - 6)^2 + (25 - 10)^2 \Rightarrow 625 = (k - 6)^2 + 225 \\
 &\Rightarrow (k - 6)^2 = 400 \\
 &\Rightarrow k - 6 = \pm 20 \\
 &\Rightarrow k = 6 \pm 20;
 \end{aligned}$$

hence, as k is a positive constant, $\underline{\underline{k = 26}}$.

(b) Find the value of k for which ABC is a straight line.

(3)

Solution

Well, the ratios are equal:

$$\begin{aligned}\frac{6-2}{10-4} &= \frac{k-6}{25-10} \Rightarrow \frac{2}{3} = \frac{k-6}{15} \\ &\Rightarrow k-6 = \frac{2}{3} \times 15 \\ &\Rightarrow k-6 = 10 \\ &\Rightarrow k = 16.\end{aligned}$$

8. Given that $x \in \mathbb{R}$ and that

(7)

- $\mathcal{E} = \{x : 2 < x < 10\}$,
- $A = \{x : 3x + 2 < 20\}$, and
- $B = \{x : x^2 < 11x - 28\}$,

find the set of values of x which define

(a) $A \cap B$,

Solution

A :

$$\begin{aligned}3x + 2 &< 20 \Rightarrow 3x < 18 \\ &\Rightarrow x < 6.\end{aligned}$$

B :

$$x^2 < 11x - 28 \Rightarrow x^2 - 11x + 28 < 0$$

$$\begin{array}{l} \text{add to: } \quad -11 \\ \text{multiply to: } \quad +28 \\ \hline \end{array} \left. \begin{array}{l} -7, \\ -4 \end{array} \right\}$$

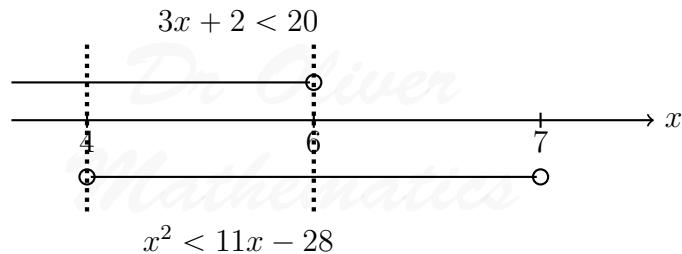
$$\Rightarrow (x - 7)(x - 4) < 0$$

we need a ‘table of signs’:

	$x < 4$	$x = 4$	$4 < x < 7$	$x = 7$	$x > 7$
$x - 4$	–	0	+	+	+
$x - 7$	–	–	–	0	+
$(x - 4)(x - 7)$	+	0	–	0	+

$$\Rightarrow 4 < x < 7.$$

We draw a number line:



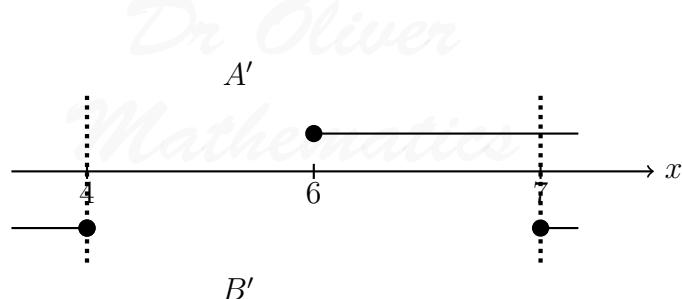
$$A \cap B = \{x : 4 < x < 6\}.$$

(b) $(A \cup B)'$.

Solution

Well,

$$(A \cup B)' = A' \cap B'.$$



Finally, since $\mathcal{E} = \{x : 2 < x < 10\}$,

$$(A \cup B)' = \{x : \underline{\underline{7 \leq x < 10}}\}.$$

9. A particle travels in a straight line so that, t s after passing through a fixed point O , its speed, v ms $^{-1}$, is given by

$$v = 8 \cos\left(\frac{1}{2}t\right).$$

(a) Find the acceleration of the particle when $t = 1$.

(3)

Solution

Now,

$$v = 8 \cos\left(\frac{1}{2}t\right) \Rightarrow a = -4 \sin\left(\frac{1}{2}t\right)$$

and

$$\begin{aligned} t = 1 &\Rightarrow a = -4 \sin\left(\frac{1}{2}\right) \\ &\Rightarrow a = -1.917702154 \text{ (FCD)} \\ &\Rightarrow \underline{\underline{a = -1.92 \text{ ms}^{-2} (3 \text{ sf})}}. \end{aligned}$$

The particle first comes to instantaneous rest at the point P .

(b) Find the distance OP .

(4)

Solution

Well,

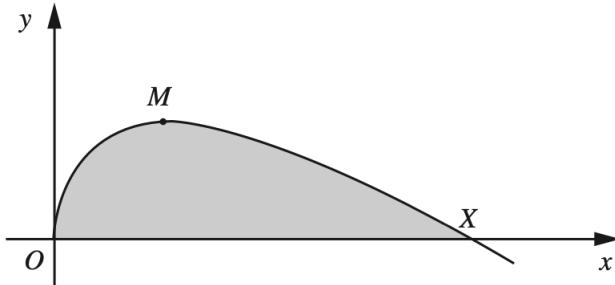
$$\begin{aligned} v = 0 &\Rightarrow 8 \cos\left(\frac{1}{2}t\right) = 0 \\ &\Rightarrow \cos\left(\frac{1}{2}t\right) = 0 \\ &\Rightarrow \frac{1}{2}t = \frac{1}{2}\pi \\ &\Rightarrow t = \pi. \end{aligned}$$

Next,

$$\begin{aligned} OP &= \int_0^\pi 8 \cos\left(\frac{1}{2}t\right) dt \\ &= \left[16 \sin\left(\frac{1}{2}t\right) \right]_{t=0}^\pi \\ &= 16 - 0 \\ &= \underline{\underline{16 \text{ m.}}} \end{aligned}$$

10. The diagram shows part of the curve

$$y = 4\sqrt{x} - x.$$



The origin O lies on the curve and the curve intersects the positive x -axis at X .

The maximum point of the curve is at M .

Find

(a) the coordinates of X and of M ,

(5)

Solution

Well,

$$\begin{aligned} y = 0 &\Rightarrow 4\sqrt{x} - x = 0 \\ &\Rightarrow \sqrt{x}(4 - \sqrt{x}) = 0 \\ &\Rightarrow \sqrt{x} = 0 \text{ or } \sqrt{x} = 4 \\ &\Rightarrow x = 0 \text{ or } x = 16. \end{aligned}$$

Hence, the point X is (16, 0).

Now,

$$\begin{aligned} y = 4\sqrt{x} - x &\Rightarrow y = 4x^{\frac{1}{2}} - x \\ &\Rightarrow \frac{dy}{dx} = 2x^{-\frac{1}{2}} - 1 \end{aligned}$$

and

$$\begin{aligned}\frac{dy}{dx} = 0 \Rightarrow 2x^{-\frac{1}{2}} - 1 &= 0 \\ \Rightarrow 2x^{-\frac{1}{2}} &= 1 \\ \Rightarrow x^{-\frac{1}{2}} &= \frac{1}{2} \\ \Rightarrow x^{\frac{1}{2}} &= 2 \\ \Rightarrow x &= 2^2 \\ \Rightarrow x &= 4 \\ \Rightarrow y &= 4;\end{aligned}$$

hence, the point M is (4, 4).

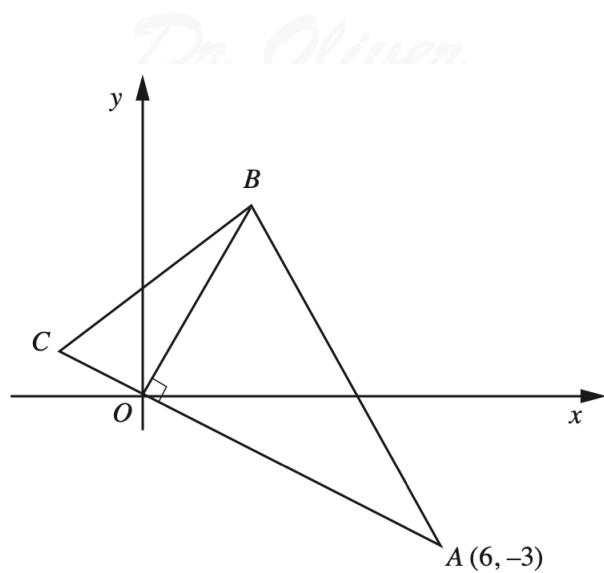
(b) the area of the shaded region.

(4)

Solution

$$\begin{aligned}\int_0^{16} (4x^{\frac{1}{2}} - x) dx &= \left[\frac{8}{3}x^{\frac{3}{2}} - \frac{1}{2}x^2 \right]_{x=0}^{16} \\ &= \left(170\frac{2}{3} - 128 \right) - (0 - 0) \\ &= 42\frac{2}{3} \text{ m.}\end{aligned}$$

11. **Solutions to this question by accurate drawing will not be accepted.**
The diagram shows a triangle ABC in which A is the point $(6, -3)$.



The line AC passes through the origin O .

The line OB is perpendicular to AC .

(a) Find the equation of OB . (2)

Solution

Well,

$$m_{OA} = \frac{-3 - 0}{6 - 0}$$

$$= -\frac{1}{2}$$

and

$$m_{OB} = -\frac{1}{-\frac{1}{2}} = 2.$$

Finally, the equation of OB is

$$\underline{y = 2x}.$$

The area of triangle AOB is 15 units².

(b) Find the coordinates of B . (3)

Solution

Well,

$$\begin{aligned}\frac{1}{2} \times OA \times OB &= 15 \Rightarrow \sqrt{6^2 + (-3)^2} \times OB = 30 \\ &\Rightarrow \sqrt{36 + 9} \times OB = 30 \\ &\Rightarrow 3\sqrt{5}OB = 30 \\ &\Rightarrow OB = 2\sqrt{5}.\end{aligned}$$

Now, $(x, 2x, 2\sqrt{x})$ is a Pythagorean triple:

$$\begin{aligned}x^2 + (2x)^2 &= (2\sqrt{x})^2 \Rightarrow x^2 + 4x^2 = 20 \\ &\Rightarrow 5x^2 = 20 \\ &\Rightarrow x^2 = 4 \\ &\Rightarrow x = 2 \\ &\Rightarrow y = 4;\end{aligned}$$

hence, B(2, 4).

The length of AO is 3 times the length of OC .

(c) Find the coordinates of C .

(2)

Solution

Well,

$$\begin{aligned}\overrightarrow{OC} &= \frac{1}{3}\overrightarrow{AO} \\ &= \frac{1}{3} \begin{pmatrix} 0 - 6 \\ 0 - (-3) \end{pmatrix} \\ &= \begin{pmatrix} -2 \\ 1 \end{pmatrix};\end{aligned}$$

hence, C(-2, 1).

The point D is such that the quadrilateral $ABCD$ is a kite.

(d) Find the area of $ABCD$.

(2)

Solution

$$\begin{aligned}OC &= \sqrt{(-2-0)^2 + (1-0)^2} \\&= \sqrt{5}\end{aligned}$$

and

$$\begin{aligned}\text{area}_{OBC} &= \frac{1}{2} \times \sqrt{5} \times 2\sqrt{5} \\&= 5.\end{aligned}$$

Finally,

$$\begin{aligned}\text{kite}_{ABCD} &= 2(5 + 15) \\&= \underline{\underline{40}}.\end{aligned}$$

EITHER

12. The function f is defined, for $x > 0$, by

$$f : x \mapsto \ln x.$$

(a) State the range of f .

(1)

Solution

$$\underline{\underline{f(x) \in \mathbb{R}}}.$$

(b) State the range of f^{-1} .

(1)

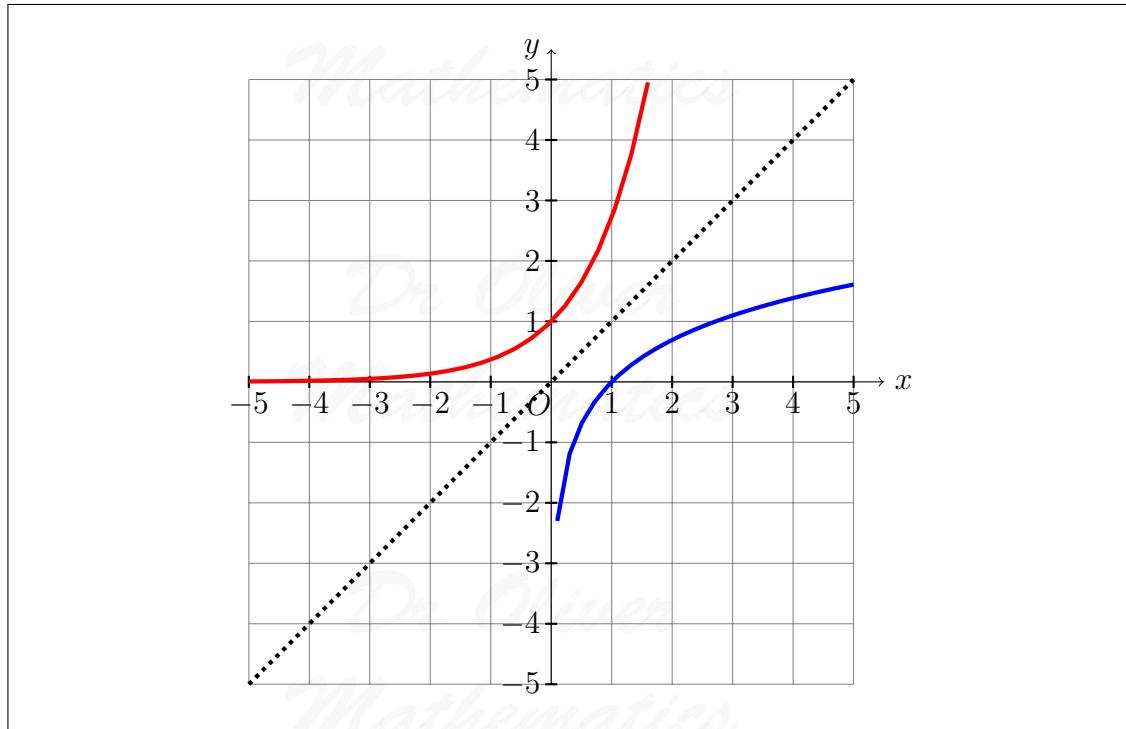
Solution

$$\underline{\underline{f^{-1}(x) > 0.}}$$

(c) On the same diagram, sketch and label the graphs of $y = f(x)$ and $y = f^{-1}(x)$.

(2)

Solution



The function g is defined, for $x > 0$, by

$$g : x \mapsto 3x + 2.$$

(d) Solve the equation

$$fg(x) = 3.$$

(2)

Solution

$$\begin{aligned}
 fg(x) = 3 &\Rightarrow f(g(x)) = 3 \\
 &\Rightarrow f(3x + 2) = 3 \\
 &\Rightarrow \ln(3x + 2) = 3 \\
 &\Rightarrow 3x + 2 = e^3 \\
 &\Rightarrow 3x = e^3 - 2 \\
 &\Rightarrow x = \frac{1}{3}(e^3 - 2) \text{ or } 6.03 \text{ (3 sf).}
 \end{aligned}$$

(e) Solve the equation

$$f^{-1}g^{-1}(x) = 7.$$

(4)

Solution

$$\begin{aligned}f^{-1} g^{-1}(x) &= 7 \Rightarrow g^{-1}(x) = f(7) \\&\Rightarrow g^{-1}(x) = \ln 7 \\&\Rightarrow x = g(\ln 7) \\&\Rightarrow x = \underline{\underline{3 \ln 7 + 2 \text{ or } 7.84 \text{ (3 sf)}}}.\end{aligned}$$

OR13. (a) Find the values of k for which

$$y = kx + 2$$

is a tangent to the curve

$$y = 4x^2 + 2x + 3.$$

SolutionWell, we will eliminate y :

$$4x^2 + 2x + 3 = kx + 2 \Rightarrow 4x^2 + (2 - k)x + 1 = 0$$

and 'equal roots' suggest $b^2 - 4ac = 0$:

$$\begin{aligned}(2 - k)^2 - 4(4)(1) &= 0 \Rightarrow (2 - k)^2 = 16 \\&\Rightarrow 2 - k = \pm 4 \\&\Rightarrow k = 2 \pm 4 \\&\Rightarrow \underline{\underline{k = 6 \text{ or } k = -2}}.\end{aligned}$$

(b) Express

$$4x^2 + 2x + 3$$

in the form

$$a(x + b)^2 + c,$$

where a , b , and c are constants.**Solution**

Well,

$$\begin{aligned}4x^2 + 2x + 3 &= 4(x^2 + \frac{1}{2}x) + 3 \\&= 4[(x^2 + \frac{1}{2}x + \frac{1}{16}) - \frac{1}{16}] + 3 \\&= 4[(x + \frac{1}{4})^2 - \frac{1}{16}] + 3 \\&= 4(x + \frac{1}{4})^2 - \frac{1}{4} + 3 \\&= \underline{\underline{4(x + \frac{1}{4})^2 + \frac{11}{4}}};\end{aligned}$$

hence, $\underline{\underline{a = 4}}$, $\underline{\underline{b = \frac{1}{4}}}$, and $\underline{\underline{c = \frac{11}{4}}}$.

(c) Determine, with explanation, whether or not the curve

$$y = 4x^2 + 2x + 3$$

meets the x -axis.

Solution

Does

$$4x^2 + 2x + 3 = 0?$$

Well,

$$2^2 - 4(4)(3) = -44 < 0,$$

so no: the curve does not meet the x -axis.

The function f is defined by

$$f : x \mapsto 4x^2 + 2x + 3,$$

where $x \geq p$.

(d) Determine the smallest value of p for which f has an inverse.

Solution

$$\underline{\underline{p = -\frac{1}{4}}}.$$