Dr Oliver Mathematics Mathematics: Higher 2018 Paper 1: Non-Calculator 1 hour 10 minutes

The total number of marks available is 60. You must write down all the stages in your working.

1. PQR is a triangle with vertices P(-2,4), Q(4,0), and R(3,6).

(3)

Find the equation of the median through R.

Solution

The midpoint – let us call it S – of PQ is

$$\left(\frac{-2+4}{2}, \frac{4+0}{2}\right) = (1,2).$$

Now, the gradient of PS is

$$\frac{6-2}{3-1} = \frac{4}{2}$$

and the equation of the median through R is

$$y - 6 = 2(x - 3) \Rightarrow y - 6 = 2x - 6$$
$$\Rightarrow y = 2x.$$

2. A function g(x) is defined on \mathbb{R} , the set of real numbers, by

e set of real numbers, by
$$g(x) = \frac{1}{5}x - 4. \tag{3}$$

(3)

(4)

Find the inverse function, $g^{-1}(x)$.

Solution

$$y = \frac{1}{5}x - 4 \Rightarrow y + 4 = \frac{1}{5}x$$
$$\Rightarrow x = 5(y + 4)$$

hence,

$$\frac{g^{-1}(x) = 5(x+4)}{.}$$

3. Given

$$h(x) = 3\cos 2x,$$

find the value of $h'(\frac{1}{6}\pi)$.

Solution

$$h(x) = 3\cos 2x \Rightarrow h'(x) = 3(-\sin 2x) \cdot 2$$
$$\Rightarrow h'(x) = -6\sin 2x$$

and

$$h'(\frac{1}{6}\pi) = \underline{-3\sqrt{3}}.$$

4. The point K(8, -5) lies on the circle with equation

$$x^2 + y^2 - 12x - 6y - 23 = 0.$$

Find the equation of the tangent to the circle at K.

Solution

$$x^{2} + y^{2} - 12x - 6y - 23 = 0 \Rightarrow x^{2} - 12x + y^{2} - 6y = 23$$
$$\Rightarrow (x^{2} - 12x + 36) + (y^{2} - 6y + 9) = 23 + 36 + 9$$
$$\Rightarrow (x - 6)^{2} + (y - 3)^{2} = 68;$$

hence, the centre C is (6,3). Now,

$$m_{CK} = \frac{3 - (-5)}{6 - 8)}$$

$$= -\frac{8}{2}$$

$$= -4$$

and the gradient of the tangent is $\frac{1}{4}$. Finally, the equation of the tangent to the circle is

(1)

- 5. A(-3,4,-7), B(5,t,5), and C(7,9,8) are collinear.
 - (a) State the ratio in which B divides AC.

Dr Oliver

We take the x-component:

$$AB = 5 - (-3) = 8$$
 and $BC = 7 - 5 = 2$;

hence, the ratio in which B divides AC is

$$8:2=\underline{4:1}.$$

(b) State the value of t.

(1)

(3)

Solution

We take the y-component:

$$AB = t - 4$$
 and $BC = 9 - t$;

now,

$$\frac{4}{t-4} = \frac{1}{9-t} \Rightarrow 4(9-t) = t-4$$

$$\Rightarrow 36-4t = t-4$$

$$\Rightarrow 40 = 5t$$

$$\Rightarrow \underline{t=8}.$$

6. Find the value of

$$\log_5 250 - \frac{1}{3} \log_5 8.$$

$$\log_5 250 - \frac{1}{3} \log_5 8 = \log_5 250 - \log_5 8^{\frac{1}{3}}$$

$$= \log_5 250 - \log_5 2$$

$$= \log_5 \left(\frac{250}{2}\right)$$

$$= \log_5 125$$

$$= \log_5 5^3$$

$$= 3 \log_5 5$$

$$= \frac{3}{2}.$$

7. The curve with equation

$$y = x^3 - 3x^2 + 2x + 5$$

is shown on the diagram.

(a) Write down the coordinates of P, the point where the curve crosses the y-axis .

(1)

Solution

P(0,5).

(b) Determine the equation of the tangent to the curve at P.

(3)

Solution

$$y = x^3 - 3x^2 + 2x + 5 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 6x + 2$$

and

$$x = 0 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2.$$

Finally,

$$y - 5 = 2(x - 0) \Rightarrow y = 2x + 5.$$

(4)

(2)

(c) Find the coordinates of Q, the point where this tangent meets the curve again.

Solution

$$2x + 5 = x^3 - 3x^2 + 2x + 5 \Rightarrow x^3 - 3x^2 = 0$$

$$\Rightarrow x^2(x - 3) = 0$$

$$\Rightarrow x = 0 \text{ or } x - 3 = 0$$

$$\Rightarrow x = 0 \text{ or } x = 3;$$

hence,

$$x = 3 \Rightarrow y = 2(3) + 5 = 11;$$

- the the coordinates are Q(3, 11).
- 8. A line has equation

$$y - \sqrt{3}x + 5 = 0.$$

Determine the angle this line makes with the positive direction of the x-axis.

Solution

$$y - \sqrt{3}x + 5 = 0 \Rightarrow y = \sqrt{3}x - 5$$

and this makes an angle of

$$\tan^{-1}\sqrt{3} = \underline{60^{\circ}}$$

with the positive direction of the x-axis.

9. The diagram shows a triangular prism ABCDEF.

 $\overrightarrow{AB} = \mathbf{t}, \ \overrightarrow{AC} = \mathbf{u}, \ \mathrm{and} \ \overrightarrow{AD} = \mathbf{v}.$

(a) Express \overrightarrow{BC} in terms of **u** and **t**.

Solution

$$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$$
$$= \underline{-\mathbf{t} + \mathbf{u}}.$$

(1)

(2)

(4)

M is the midpoint of BC.

(b) Express MD in terms of \mathbf{t} , \mathbf{u} , and \mathbf{v} .

Solution

$$\overrightarrow{MD} = \overrightarrow{MC} + \overrightarrow{CA} + \overrightarrow{AD}$$

$$= \frac{1}{2}\overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{AD}$$

$$= \frac{1}{2}(-\mathbf{t} + \mathbf{u}) - \mathbf{u} + \mathbf{v}$$

$$= -\frac{1}{2}\mathbf{t} + \frac{1}{2}\mathbf{u} - \mathbf{u} + \mathbf{v}$$

$$= -\frac{1}{2}\mathbf{t} - \frac{1}{2}\mathbf{u} + \mathbf{v}.$$

10. Given that

 $\bullet \ \frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 3x + 4 \text{ and}$

• y = 14 when x = 2,

express y in terms of x.

Solution

$$\frac{dy}{dx} = 6x^2 - 3x + 4 \Rightarrow y = 2x^3 - \frac{3}{2}x^2 + 4x + c$$

for some constant c. Now,

$$x = 2, y = 14 \Rightarrow 14 = 16 - 6 + 8 + c$$
$$\Rightarrow c = -4$$

and

$$y = 2x^3 - \frac{3}{2}x^2 + 4x - 4.$$

11. The diagram shows the curve with equation

$$y = \log_3 x.$$

(3)

$$y = 1 - \log_3 x.$$

(b) Determine the exact value of the x-coordinate of the point of intersection of the two curves.

$$\log_3 x = 1 - \log_3 x \Rightarrow 2\log_3 x = 1$$

$$\Rightarrow \log_3 x = \frac{1}{2}$$

$$\Rightarrow x = 3^{\frac{1}{2}}$$

$$\Rightarrow \underline{x} = \sqrt{3}.$$

12. Vectors \mathbf{a} and \mathbf{b} are such that

$$\mathbf{a} = 4\mathbf{i} - 2\mathbf{j} + 2\mathbf{k} \text{ and } \mathbf{b} = -2\mathbf{i} + \mathbf{j} + p\mathbf{k}.$$

(a) Express $2\mathbf{a} + \mathbf{b}$ in component form.

(1)

Solution

$$2\mathbf{a} + \mathbf{b} = 2(4\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) + (-2\mathbf{i} + \mathbf{j} + p\mathbf{k})$$
$$= 6\mathbf{i} - 3\mathbf{j} + (4+p)\mathbf{k}.$$

(b) Hence find the values of p for which

(3)

$$|2\mathbf{a} + \mathbf{b}| = 7.$$

Solution

$$|2\mathbf{a} + \mathbf{b}| = 7 \Rightarrow |6\mathbf{i} - 3\mathbf{j} + (4+p)\mathbf{k}| = 7$$

$$\Rightarrow |6\mathbf{i} - 3\mathbf{j} + (4+p)\mathbf{k}|^2 = 7^2$$

$$\Rightarrow 6^2 + (-3)^2 + (4+p)^2 = 49$$

$$\Rightarrow 36 + 9 + (4+p)^2 = 49$$

$$\Rightarrow (4+p)^2 = 4$$

$$\Rightarrow 4 + p = \pm 2$$

$$\Rightarrow p = -6 \text{ or } p = -2.$$

13. The right-angled triangle in the diagram is such that

$$\sin x = \frac{2}{\sqrt{11}}$$
 and $0 < x < \frac{1}{4}\pi$.

- (a) Find the exact value of:
 - (i) $\sin 2x$,

(3)

(3)

Solution

$$adj = \sqrt{(\sqrt{11})^2 - 2^2}$$
$$= \sqrt{11 - 4}$$
$$= \sqrt{7}.$$

Now,

$$\sin 2x = 2\sin x \cos x$$

$$= 2 \cdot \frac{2}{\sqrt{11}} \cdot \frac{\sqrt{7}}{\sqrt{11}}$$

$$= \frac{4\sqrt{7}}{11}.$$

(ii) $\cos 2x$

$$\frac{\cos 2x}{\text{Solution}} \tag{1}$$

$$\cos 2x = 2\cos^2 x - 1$$

$$= 2\left(\frac{\sqrt{7}}{\sqrt{11}}\right)^2 - 1$$

$$= 2\left(\frac{7}{11}\right) - 1$$

$$= \frac{14}{11} - 1$$

$$= \frac{3}{11}.$$

(b) By expressing $\sin 3x$ as $\sin(2x+x)$, find the exact value of $\sin 3x$.

$$\sin 3x = \sin 2x \cos x + \sin x \cos 2x$$

$$= \left(\frac{4\sqrt{7}}{11} \cdot \frac{\sqrt{7}}{\sqrt{11}}\right) + \left(\frac{2}{\sqrt{11}} \cdot \frac{3}{11}\right)$$

$$= \frac{28}{11\sqrt{11}} + \frac{6}{11\sqrt{11}}$$

$$= \frac{34}{11\sqrt{11}}$$

$$= \frac{34}{11\sqrt{11}} \times \frac{\sqrt{11}}{\sqrt{11}}$$

$$= \frac{34\sqrt{11}}{121}.$$

14. Evaluate

$$\int_{-4}^{9} \frac{1}{\sqrt[3]{(2x+9)^2}} \, \mathrm{d}x. \tag{5}$$

(4)

Solution

$$\int_{-4}^{9} \frac{1}{\sqrt[3]{(2x+9)^2}} dx = \int_{-4}^{9} (2x+9)^{-\frac{2}{3}} dx$$
$$= \left[\frac{3}{2} (2x+9)^{\frac{1}{3}} \right]_{x=-4}^{9}$$
$$= \frac{3}{2} (3-1)$$
$$= \underline{3}.$$

- 15. A cubic function, f, is defined on the set of real numbers.
 - (x + 4) is a factor of f(x),
 - x = 2 is a repeated root of f(x),
 - f'(-2) = 0, and
 - f'(x) > 0 where the graph with equation y = f(x) crosses the y-axis.

Sketch a possible graph of y = f(x).

Dr Oliver

Solution

First, is

$$f(x) = (x+4)(x-2)^2$$

(incorporating the first two items)? If it is, then

$$f(x) = (x+4)(x-2)^2 \Rightarrow f(x) = (x+4)(x^2-4x+4)$$

$$\Rightarrow f(x) = x^3 - 12x + 16$$
$$\Rightarrow f'(x) = 3x^2 - 12.$$

Now,

$$f'(-2) = 3 \cdot (-2) - 12 = 0$$
 (third item).

Finally,

$$f'(0^+) = -12^+ \text{ (fourth item)}$$

so, no – but we increase by 12:

$$f(x) = (x+4)(x-2)^2 + 12.$$

Hence,

Dr Oliver

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics 14