A2 Mathematics: Revision Questions 2

Dr Oliver

March 1, 2018

$$\int \sin x \, dx =$$

$$\int \cos x \, dx =$$

$$\int \tan x \, dx =$$

$$\int \csc x \, dx =$$

$$\int \sec x \, dx =$$

$$\int \cot x \, dx =$$

$$\int \sin x \, dx = -\cos x + c$$

$$\int \cos x \, dx =$$

$$\int \tan x \, dx =$$

$$\int \csc x \, dx =$$

$$\int \sec x \, dx =$$

$$\int \cot x \, dx =$$

$$\int \sin x \, dx = -\cos x + c$$

$$\int \cos x \, dx = \sin x + c$$

$$\int \tan x \, dx =$$

$$\int \csc x \, dx =$$

$$\int \cot x \, dx =$$

$$\int \sin x \, dx = -\cos x + c$$

$$\int \cos x \, dx = \sin x + c$$

$$\int \tan x \, dx = \ln|\sec x| + c$$

$$\int \csc x \, dx =$$

$$\int \sec x \, dx =$$

$$\int \cot x \, dx =$$

$$\int \sin x \, dx = -\cos x + c$$

$$\int \cos x \, dx = \sin x + c$$

$$\int \tan x \, dx = \ln|\sec x| + c$$

$$\int \csc x \, dx = \ln|\csc x - \cot x| + c$$

$$\int \sec x \, dx =$$

$$\int \cot x \, dx =$$

$$\int \sin x \, dx = -\cos x + c$$

$$\int \cos x \, dx = \sin x + c$$

$$\int \tan x \, dx = \ln|\sec x| + c$$

$$\int \csc x \, dx = \ln|\csc x - \cot x| + c$$

$$\int \sec x \, dx = \ln|\sec x + \tan x| + c$$

$$\int \cot x \, dx =$$

$$\int \sin x \, dx = -\cos x + c$$

$$\int \cos x \, dx = \sin x + c$$

$$\int \tan x \, dx = \ln|\sec x| + c$$

$$\int \csc x \, dx = \ln|\csc x - \cot x| + c$$

$$\int \sec x \, dx = \ln|\sec x + \tan x| + c$$

$$\int \cot x \, dx = \ln|\sin x| + c$$

Dr Oliver Mathematics $14^2 =$

Dr Oliver Mathematics

 $14^2 = 196$

Dr Oliver Mathematics

$$14^2 = 196$$
 $8^3 =$

Dr Oliver Mathematics

$$14^2 = 196$$
 $8^3 = 512$

Dr Oliver Mathematics

$$14^2 = 196 8^3 = 512$$

$$8^3 = 512$$

$$16^2 =$$

 $16^2 =$

$$14^2 = 196 8^3 = 512$$

$$16^2 = 256$$

$$14^2 = 196$$
 $8^3 = 512$

$$16^2 = 256 4^3 =$$

$$14^2 = 196 8^3 = 512$$

$$8^3 = 512$$

$$16^2 = 256 4^3 = 64$$

$$4^3 = 64$$

$$14^{2} = 196$$
 $8^{3} = 512$ $16^{2} = 256$ $4^{3} = 64$ $-19^{2} =$

$$14^{2} = 196 8^{3} = 512$$

$$16^{2} = 256 4^{3} = 64$$

$$-19^{2} = -361$$

$$14^{2} = 196 8^{3} = 512$$

$$16^{2} = 256 4^{3} = 64$$

$$-19^{2} = -361 (-5)^{3} =$$

$$14^{2} = 196 8^{3} = 512$$

$$16^{2} = 256 4^{3} = 64$$

$$-19^{2} = -361 (-5)^{3} = -125$$

1. What is the consequence of modelling an object as a rod?

Dr Oliver Mathematics

1. What is the consequence of modelling an object as a rod? The mass of the object is distributed along a straight line. It also means that the object is considered to be rigid.

Dr Oliver Mathematics Dr Oliver Mathematics

- 1. What is the consequence of modelling an object as a rod? The mass of the object is distributed along a straight line. It also means that the object is considered to be rigid.
- 2. What is the consequence of modelling an object as a particle?

- 1. What is the consequence of modelling an object as a rod? The mass of the object is distributed along a straight line. It also means that the object is considered to be rigid.
- 2. What is the consequence of modelling an object as a particle? The mass of the object can be considered to be concentrated at a single point.

- 1. What is the consequence of modelling an object as a rod? The mass of the object is distributed along a straight line. It also means that the object is considered to be rigid.
- 2. What is the consequence of modelling an object as a particle? The mass of the object can be considered to be concentrated at a single point.
- 3. What is a wire?

- 1. What is the consequence of modelling an object as a rod? The mass of the object is distributed along a straight line. It also means that the object is considered to be rigid.
- 2. What is the consequence of modelling an object as a particle? The mass of the object can be considered to be concentrated at a single point.

Dr Oliver Mathematics

3. What is a wire? A rigid thin length of metal.

1. Which kinematic equation involves only a, s, t, and v?

1. Which kinematic equation involves only a, s, t, and v?

$$s = vt - \frac{1}{2}at^2$$

Dr Oliver Mathematics

1. Which kinematic equation involves only a, s, t, and v?

$$s = vt - \frac{1}{2}at^2$$

2. Which kinematic equation involves only s, t, u, and v?

1. Which kinematic equation involves only a, s, t, and v?

$$s = vt - \frac{1}{2}at^2$$

2. Which kinematic equation involves only s, t, u, and v?

$$s = \frac{1}{2}(u+v)t$$

1. Which kinematic equation involves only a, s, t, and v?

$$s = vt - \frac{1}{2}at^2$$

2. Which kinematic equation involves only s, t, u, and v?

$$s = \frac{1}{2}(u+v)t$$

3. Which kinematic equation involves only a, t, u, and v?

1. Which kinematic equation involves only a, s, t, and v?

$$s = vt - \frac{1}{2}at^2$$

2. Which kinematic equation involves only s, t, u, and v?

$$s = \frac{1}{2}(u+v)t$$

3. Which kinematic equation involves only a, t, u, and v?

$$v = u + at$$

 $\sin(A-B)$

Dr Oliver Mathematics

 $\sin(A - B) \equiv \sin A \cos B - \sin B \cos A$

Dr Oliver Mathematics

$$\sin(A - B) \equiv \sin A \cos B - \sin B \cos A$$

$$\cos(A-B)$$

$$\sin(A - B) \equiv \sin A \cos B - \sin B \cos A$$

$$\cos(A - B) \equiv \cos A \cos B + \sin A \sin B$$

Trigonometric Identities

$$\sin(A - B) \equiv \sin A \cos B - \sin B \cos A$$

$$\cos(A - B) \equiv \cos A \cos B + \sin A \sin B$$

$$tan(A+B)$$

Trigonometric Identities

$$\sin(A - B) \equiv \sin A \cos B - \sin B \cos A$$

$$\cos(A - B) \equiv \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) \equiv \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\int f'(x)e^{f(x)}\,dx$$

Dr Oliver Mathematics

$$\int f'(x)e^{f(x)} dx = e^{f(x)} + c$$

Dr Oliver Mathematics

$$\int f'(x)e^{f(x)} dx = e^{f(x)} + c$$

$$\int \frac{f'(x)}{f(x)} \, dx$$

$$\int f'(x)e^{f(x)} dx = e^{f(x)} + c$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

$$\int f'(x)e^{f(x)} dx = e^{f(x)} + c$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

$$\frac{d}{dx} \left(\frac{u}{v}\right)$$

$$\int f'(x)e^{f(x)} dx = e^{f(x)} + c$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

$$\frac{d}{dx} \left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

 $\int \ln x \, dx$

Dr Oliver Mathematics

$$\int \ln x \, dx = \int (1 \times \ln x) \, dx$$

Dr Oliver Mathematics

$$\int \ln x \, dx = \int (1 \times \ln x) \, dx$$

$$u = \ln x$$

$$\int \ln x \, dx = \int (1 \times \ln x) \, dx$$

$$u = \ln x \quad \frac{dv}{dx} = 1$$

$$\int \ln x \, dx = \int (1 \times \ln x) \, dx$$

$$u = \ln x \quad \frac{dv}{dx} = 1$$

$$\frac{du}{dx} = \frac{1}{x}$$

$$\int \ln x \, dx = \int (1 \times \ln x) \, dx$$

$$u = \ln x \quad \frac{dv}{dx} = 1$$
$$\frac{du}{dx} = \frac{1}{x} \quad v = x$$

$$\int \ln x \, dx = \int (1 \times \ln x) \, dx$$
$$= x \ln x - \int 1 \, dx$$

$$u = \ln x \quad \frac{dv}{dx} = 1$$
$$\frac{du}{dx} = \frac{1}{x} \quad v = x$$

$$\int \ln x \, dx = \int (1 \times \ln x) \, dx$$
$$= x \ln x - \int 1 \, dx$$
$$= x \ln x - x + c.$$

$$u = \ln x \qquad \frac{dv}{dx} = 1$$
$$\frac{du}{dx} = \frac{1}{x} \qquad v = x$$

$$f(x) = x^2, \{x \in \mathbb{R} : -5 \le x \le 0\}$$

$$f(x) = x^2, \{x \in \mathbb{R} : -5 \le x \le 0\}$$

$$\{f(x) \in \mathbb{R} : 0 \leqslant f(x) \leqslant 25\}$$

$$f(x) = x^2, \{x \in \mathbb{R} : -5 \le x \le 0\}$$

$$\{f(x) \in \mathbb{R} : 0 \leqslant f(x) \leqslant 25\}$$

2. Does this function have an inverse: yes or no?

Dr Oliver Mathematics

$f(x) = x^2, \{x \in \mathbb{R} : -5 \le x \le 0\}$

1. What is the range of the function?

$$\{f(x) \in \mathbb{R} : 0 \leqslant f(x) \leqslant 25\}$$

2. Does this function have an inverse: yes or no?

Yes.

Dr Oliver Mathematics

$f(x) = x^2, \{x \in \mathbb{R} : -5 \le x \le 0\}$

1. What is the range of the function?

$$\{f(x) \in \mathbb{R} : 0 \leqslant f(x) \leqslant 25\}$$

2. Does this function have an inverse: yes or no?

Yes.

3. What is the equation of the inverse function?

$$f(x) = x^2, \{x \in \mathbb{R} : -5 \le x \le 0\}$$

$$\{f(x) \in \mathbb{R} : 0 \leqslant f(x) \leqslant 25\}$$

2. Does this function have an inverse: yes or no?

Yes.

3. What is the equation of the inverse function?

$$f^{-1}(x) = -\sqrt{x}$$

$$f(x) = x^2, \{x \in \mathbb{R} : -5 \le x \le 0\}$$

$$\{f(x) \in \mathbb{R} : 0 \leqslant f(x) \leqslant 25\}$$

2. Does this function have an inverse: yes or no?

Yes.

3. What is the equation of the inverse function?

$$f^{-1}(x) = -\sqrt{x}$$

4. What is the domain of the inverse function?

$$f(x) = x^2, \{x \in \mathbb{R} : -5 \le x \le 0\}$$

$$\{f(x) \in \mathbb{R} : 0 \leqslant f(x) \leqslant 25\}$$

2. Does this function have an inverse: yes or no?

Yes.

3. What is the equation of the inverse function?

$$f^{-1}(x) = -\sqrt{x}$$

4. What is the domain of the inverse function?

$$\{x \in \mathbb{R} : 0 \leqslant x \leqslant 25\}$$

$$f(x) = x^2, \{x \in \mathbb{R} : -5 \le x \le 0\}$$

$$\{f(x) \in \mathbb{R} : 0 \leqslant f(x) \leqslant 25\}$$

2. Does this function have an inverse: yes or no?

Yes.

3. What is the equation of the inverse function?

$$f^{-1}(x) = -\sqrt{x}$$

4. What is the domain of the inverse function?

$$\{x \in \mathbb{R} : 0 \leqslant x \leqslant 25\}$$

5. What is the range of the inverse function?

$$f(x) = x^2, \{x \in \mathbb{R} : -5 \le x \le 0\}$$

$$\{f(x) \in \mathbb{R} : 0 \leqslant f(x) \leqslant 25\}$$

2. Does this function have an inverse: yes or no?

Yes.

3. What is the equation of the inverse function?

$$f^{-1}(x) = -\sqrt{x}$$

4. What is the domain of the inverse function?

$$\{x \in \mathbb{R} : 0 \leqslant x \leqslant 25\}$$

5. What is the range of the inverse function?

$$\{f^{-1}(x) \in \mathbb{R} : -5 \le f^{-1}(x) \le 0\}$$

1. Find the value or values of $a, 0 \le a \le 360, a \ne 247$ such that $\sin 247^{\circ} = \sin a^{\circ}$.

Dr Oliver Mathematics

1. Find the value or values of a, $0 \le a \le 360$, $a \ne 247$ such that $\sin 247^{\circ} = \sin a^{\circ}$.

$$a = 540 - 247 = \underline{293}$$

1. Find the value or values of $a, 0 \le a \le 360, a \ne 247$ such that $\sin 247^{\circ} = \sin a^{\circ}$.

$$a = 540 - 247 = \underline{293}$$

2. Find the value or values of b, $0 \le b \le 360$, $b \ne 128$ such that $\cos 128^{\circ} = \cos b^{\circ}$.

1. Find the value or values of a, $0 \le a \le 360$, $a \ne 247$ such that $\sin 247^{\circ} = \sin a^{\circ}$.

$$a = 540 - 247 = \underline{293}$$

2. Find the value or values of b, $0 \le b \le 360$, $b \ne 128$ such that $\cos 128^{\circ} = \cos b^{\circ}$.

$$b = 360 - 128 = 232$$

1. Find the value or values of $a, 0 \le a \le 360, a \ne 247$ such that $\sin 247^{\circ} = \sin a^{\circ}$.

$$a = 540 - 247 = \underline{293}$$

2. Find the value or values of b, $0 \le b \le 360$, $b \ne 128$ such that $\cos 128^{\circ} = \cos b^{\circ}$.

$$b = 360 - 128 = \underline{232}$$

3. Find the value or values of c, $0 \le c \le 2\pi$, $c \ne \frac{2\pi}{3}$ such that $\tan \frac{2\pi}{3} = \tan c$.

1. Find the value or values of $a, 0 \le a \le 360, a \ne 247$ such that $\sin 247^{\circ} = \sin a^{\circ}$.

$$a = 540 - 247 = \underline{293}$$

2. Find the value or values of b, $0 \le b \le 360$, $b \ne 128$ such that $\cos 128^{\circ} = \cos b^{\circ}$.

$$b = 360 - 128 = \underline{232}$$

3. Find the value or values of c, $0 \le c \le 2\pi$, $c \ne \frac{2\pi}{3}$ such that $\tan \frac{2\pi}{3} = \tan c$.

$$c = \frac{2\pi}{3} + \pi = \frac{5\pi}{3}$$

