Dr Oliver Mathematics Applied Mathematics: Sequences

The total number of marks available is 25. You must write down all the stages in your working.

1. Define

$$S_n = \sum_{r=1}^n r^2, \, n \geqslant 1.$$

- (a) Write down formulae for S_n and S_{2n+1} .
- (b) Obtain a formula for

$$2^2 + 4^2 + \ldots + (2n)^2$$
.

2. (a) Use the standard formulas for

$$\sum_{r=1}^{n} r \text{ and } \sum_{r=1}^{n} r^2$$

to show that

$$\sum_{r=1}^{n} (6r^2 - r) = \frac{1}{2}n(n+1)(4n+1).$$

(b) Hence evaluate

$$\sum_{r=5}^{10} (6r^2 - r).$$

3. (a) Find the value of N for which

$$\sum_{r=1}^{N} r = 210.$$

(b) Evaluate

$$\int_{-1}^{1} r^2$$

(2)

(1)

(3)

(2)

(3)

(2)

(2)

for this value of N.

4. (a) State

$$\sum_{r=1}^{n} r \text{ and } \sum_{r=1}^{n} r^3$$

in terms of n.

$$\sum_{r=1}^{n} (r^3 - 3r) = \frac{n(n+1)(n-2)(n+3)}{4}.$$

(c) Use the above result to evaluate

$$\sum_{r=5}^{15} (r^3 - 3r).$$

(2)

(2)

(3)

5. Evaluate

$$\sum_{r=1}^{80} 3r^2. (2)$$

6. (a) Express

$$\log_a 2 + \log_a 4 + \log_a 8 \tag{1}$$

in the form

$$p\log_a 2$$
,

where p is a constant.

(b) Hence evaluate

$$\sum_{r=1}^{100} \log_a 2^r,$$

giving your answer in the form

$$q\log_a 2$$
,

where q is a constant.

Dr Oliver Mathematics

Dr Oliver Mathematics