Dr Oliver Mathematics AQA Further Maths Level 2
 June 2019 Paper 2
 2 hours

The total number of marks available is 105 .
You must write down all the stages in your working.
You are permitted to use a scientific or graphical calculator in this paper.

1. (a)

$$
\begin{equation*}
a\binom{3}{5}=4\binom{2 a+3}{b} . \tag{3}
\end{equation*}
$$

Work out the values of a and b.

Solution

Well,

$$
\begin{equation*}
3 a=4(2 b+3) \Rightarrow 3 a=8 b+12 \tag{1}
\end{equation*}
$$

and

$$
5 a=4 b \quad(2)
$$

Now, do $2 \times(2)$:

$$
\begin{equation*}
10 a=8 b \tag{3}
\end{equation*}
$$

and do (3) - (1):

$$
\begin{aligned}
5 a=-12 & \Rightarrow \underline{\underline{a=-\frac{12}{5}}} \\
& \Rightarrow 5\left(-\frac{12}{5}\right)=4 b \\
& \Rightarrow-12=4 b \\
& \Rightarrow \underline{b=-3}
\end{aligned}
$$

(b)

$$
\left(\begin{array}{cc}
m & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 2 \\
-2 & -1
\end{array}\right)=\mathbf{I}
$$

where \mathbf{I} is the identity matrix.
Work out the value of m.

Solution

Now,

$$
\begin{aligned}
\mathbf{I} & =\left(\begin{array}{cc}
m & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 2 \\
-2 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 m+2 & 2 m+1 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Choose the $(1,1)$ element:

$$
\begin{aligned}
2 m+2=1 & \Rightarrow 2 m=-1 \\
& \Rightarrow \underline{\underline{m=-\frac{1}{2}}} .
\end{aligned}
$$

2. Here is a sketch of quadrilateral $P Q R S$.
M is the midpoint of $P S$.

Use gradients to show that $M R$ is parallel to $P Q$.

Solution

Now,

$$
\begin{aligned}
m_{P Q} & =\frac{-3-1}{10-4} \\
& =\frac{-4}{6} \\
& =-\frac{2}{3} .
\end{aligned}
$$

Next, M is the point

$$
\left(\frac{4+6}{2}, \frac{1+11}{2}\right)=(5,6)
$$

and

$$
\begin{aligned}
m_{M R} & =\frac{0-6}{14-5} \\
& =\frac{-6}{9} \\
& =-\frac{2}{3} ;
\end{aligned}
$$

hence, $M R$ is parallel to $P Q$ as the gradients are the same.
3.

$$
-2<a<0 \text { and }-1<b<1
$$

Tick the correct box for each statement.

	Always true	Sometimes true	Never true
$a^{2}<0$			
$-1<b^{3}<1$			
$\frac{b}{a}<0$			
$a-b>0$			

Solution

	Always true	Sometimes true	Never true
$a^{2}<0$			\checkmark
$-1<b^{3}<1$	\checkmark		
$\frac{b}{a}<0$		\checkmark	
$a-b>0$	\checkmark		

4. P is a point on a curve.

The curve has gradient function

$$
\frac{x^{5}-17}{10}
$$

The tangent to the curve at P is parallel to the line

$$
3 x-2 y=9 .
$$

Work out the x-coordinate of P.

Solution

Tangent:

$$
\begin{aligned}
3 x-2 y=9 & \Rightarrow 2 y=3 x-9 \\
& \Rightarrow y=\frac{3}{2} x-\frac{9}{2}
\end{aligned}
$$

and so the gradient is $\frac{3}{2}$.
Now,

$$
\begin{aligned}
\frac{x^{5}-17}{10}=\frac{3}{2} & \Rightarrow x^{5}-17=15 \\
& \Rightarrow x^{5}=32 \\
& \Rightarrow x=\sqrt[5]{32} \\
& \Rightarrow x=2 .
\end{aligned}
$$

5. (a) Write

$$
\sqrt[4]{a \times a^{-9}}
$$

as an integer power of a.

Solution

$$
\begin{aligned}
\sqrt[4]{a \times a^{-9}} & =\left(a^{-8}\right)^{\frac{1}{4}} \\
& =\underline{\underline{a^{-2}}}
\end{aligned}
$$

(b) Simplify fully

$$
\frac{\left(4 c d^{2}\right)^{3}}{2 c d^{4}}
$$

Solution

$$
\begin{aligned}
\frac{\left(4 c d^{2}\right)^{3}}{2 c d^{4}} & =\frac{64 c^{3} d^{6}}{2 c d^{4}} \\
& =\underline{\underline{32 c^{2} d^{2}}}
\end{aligned}
$$

6. Here is a sketch of the curve

$$
y=(2 x+3)(x-2) .
$$

The curve intersects the x-axis at A and B.
(a) Complete the coordinates of A and B.

$$
\begin{equation*}
A(\quad, 0) \quad B(\quad, 0) \tag{2}
\end{equation*}
$$

Solution

$$
\begin{aligned}
(2 x+3)(x-2)=0 & \Rightarrow 2 x+3=0 \text { or } x-2=0 \\
& \Rightarrow x=-\frac{3}{2} \text { or } x=2 .
\end{aligned}
$$

Hence,

$$
\underline{\underline{A\left(-\frac{3}{2}, 0\right)}} \quad \underline{\underline{B(2,0)}}
$$

(b) Write down the range of values for x for which

$$
\begin{equation*}
(2 x+3)(x-2)<0 . \tag{1}
\end{equation*}
$$

Solution

$$
-\frac{3}{2}<x<2 .
$$

7. (a) On the grid, sketch a graph for which the rate of change of y with respect to x is always zero.

Solution

E.g.,

(b) On the grid, sketch a graph for which
the rate of change of y with respect to x is always a positive constant.

Solution

E.g.,

8. (a) A linear sequence has first term

$$
\begin{equation*}
7+12 \sqrt{5} \tag{2}
\end{equation*}
$$

The term-to-term rule is
add $9-2 \sqrt{5}$.
One term of the sequence is an integer.
Work out the value of this integer.

Solution

Well,

$$
x=\frac{12}{2}=6
$$

and is the seventh term $(1+6=7)$:

$$
\begin{aligned}
(7+12 \sqrt{5})+6(9-2 \sqrt{5}) & =(7+12 \sqrt{5})+(54-12 \sqrt{5}) \\
& =\underline{\underline{61}} .
\end{aligned}
$$

(b) The nth term of a different sequence is

$$
\frac{3 n^{2}-1}{n^{2}+1} .
$$

Work out the sum of the first three terms.

Solution

$$
\begin{aligned}
& n=1 \Rightarrow \frac{3-1}{1+1}=\frac{2}{2}=1 \\
& n=2 \Rightarrow \frac{12-1}{4+1}=\frac{11}{5} \\
& n=3 \Rightarrow \frac{27-1}{9+1}=\frac{26}{10}=\frac{13}{5}
\end{aligned}
$$

the sum of the first three terms is

$$
1+\frac{11}{5}+\frac{13}{5}=\underline{\underline{5 \frac{4}{5}}} .
$$

(c) The first four terms of a quadratic sequence are

$$
\begin{array}{llll}
-3 & 3 & 13 & 27 . \tag{3}
\end{array}
$$

Work out an expression for the nth term.

Solution

Let the

$$
n \text {th term }=a n^{2}+b n+c
$$

Then

$$
\begin{array}{lllllll}
-3 & & 3 & & 13 & & 27 \\
& 6 & & 10 & & 14 &
\end{array}
$$

and

$$
\begin{array}{lccccc}
a+b+c & & 4 a+2 b+c & & 9 a+3 b+c & \\
& 3 a+b & & 5 a+b & & 7 a+b
\end{array}
$$

We compare terms:

$$
\begin{aligned}
2 a=4 & \Rightarrow a=2 \\
3 a+b=6 & \Rightarrow 3 \times 2+b=6 \\
& \Rightarrow b=0
\end{aligned}
$$

and

$$
\begin{aligned}
a+b+c=0 & \Rightarrow 2+0+c=-3 \\
& \Rightarrow c=-5 ;
\end{aligned}
$$

hence,

$$
n \text {th term }=\underline{\underline{2 n^{2}}-5} .
$$

9. Factorise fully

$$
\begin{equation*}
(p+6)^{11}-(p+6)^{10} \tag{2}
\end{equation*}
$$

Solution

$$
\begin{aligned}
(p+6)^{11}-(p+6)^{10} & =(p+6)^{10}[(p+6)-1] \\
& =\underline{\underline{(p+5)(p+6)^{10}}} .
\end{aligned}
$$

10. (a)

$$
\begin{equation*}
\mathrm{f}(x)=x^{3}-2 . \tag{2}
\end{equation*}
$$

The domain of $\mathrm{f}(x)$ is $x \leqslant 3$.
Work out the range of $\mathrm{f}(x)$.

Solution

Well,

$$
f(3)=3^{3}-2=25
$$

and the range of $\mathrm{f}(x)$ is

$$
\mathrm{f}(x) \leqslant 25
$$

(b)

$$
\begin{equation*}
\mathrm{g}(x)=5-x^{2} \tag{2}
\end{equation*}
$$

The domain of $\mathrm{g}(x)$ is $-2 \leqslant x \leqslant 1$.
Work out the range of $\mathrm{g}(x)$.

Solution

So,

$$
g(-2)=5-(-2)^{2}=1
$$

and

$$
\mathrm{g}(0)=5-0^{2}=5
$$

Hence, the range of $\mathrm{g}(x)$ is

$$
\underline{1 \leqslant \mathrm{~g}(x) \leqslant 5}
$$

11. Here is a sketch of a quadratic curve which has a maximum point at $(-2,5)$.

Not drawn accurately

What is the equation of the normal to the curve at the maximum point?
Circle your answer.

$$
x=-2 \quad y=5 \quad x=5 \quad y=-2
$$

Solution

It is either $x=5$ or $x=-2$ (why?). Hence, the equation of the normal to the curve at the maximum point is

$$
\underline{\underline{x=-2}} \quad y=5 \quad x=5 \quad y=-2
$$

12. The diagram shows a solid hemisphere.

- The diameter is $12 a \mathrm{~cm}$.
- The volume is $486 \pi \mathrm{~cm}^{3}$.

Work out the value of a.

Solution

Well, the volume of the sphere would have be

$$
2 \times 486 \pi=972 \pi
$$

and

$$
\begin{aligned}
\frac{4}{3} \times \pi \times(6 a)^{3}=972 \pi & \Rightarrow 288 a^{3}=972 \\
& \Rightarrow a^{3}=\frac{27}{8} \\
& \Rightarrow a=1 \frac{1}{2}
\end{aligned}
$$

13. Simplify fully

$$
\frac{x-x^{3}}{2 x+2 x^{2}}
$$

You must show your working.

Solution

$$
\frac{x-x^{3}}{2 x+2 x^{2}}=\frac{x\left(1-x^{2}\right)}{2 x(1+x)}
$$

difference of two squares:

$$
\begin{aligned}
& =\frac{x(1+x)(1-x)}{2 x(1+x)} \\
& =\underline{\underline{x(1-x)}} .
\end{aligned}
$$

14. Here is a triangle.

Use the cosine rule to work out the ratio

$$
b^{2}: a^{2}
$$

Solution

Cosine rule:

$$
\begin{array}{rlrl}
& & b^{2} & =a^{2}+(3 a)^{2}-2(a)(3 a)\left(\cos 120^{\circ}\right) \\
\Rightarrow & b^{2} & =a^{2}+9 a^{2}-6 a^{2}\left(-\frac{1}{2}\right) \\
\Rightarrow & b^{2} & =10 a^{2}+3 a^{2} \\
\Rightarrow & b^{2} & =13 a^{2} ;
\end{array}
$$

hence, the ratio is

$$
\underline{\underline{13: 1}} .
$$

15. Rearrange
to make p the subject.

Solution

$$
\begin{aligned}
m=\frac{2 p+1}{p}+\frac{p+5}{3 p} & \Rightarrow m=\frac{3(2 p+1)}{3 p}+\frac{p+5}{3 p} \\
& \Rightarrow m=\frac{(6 p+3)+(p+5)}{3 p} \\
& \Rightarrow m=\frac{7 p+8}{3 p} \\
& \Rightarrow 3 m p=7 p+8 \\
& \Rightarrow 3 m p-7 p=8 \\
& \Rightarrow p(3 m-7)=8 \\
& \Rightarrow p=\frac{8}{3 m-7} .
\end{aligned}
$$

16. The curve

$$
\begin{equation*}
y=2 \sqrt{x-a}+5 \tag{3}
\end{equation*}
$$

passes through the point $(1,8)$
Work out the value of a.

Solution

$$
\begin{aligned}
x=1, y=8 & \Rightarrow 8=2 \sqrt{1-a}+5 \\
& \Rightarrow 3=2 \sqrt{1-a} \\
& \Rightarrow \frac{3}{2}=\sqrt{1-a} \\
& \Rightarrow\left(\frac{3}{2}\right)^{2}=1-a \\
& \Rightarrow \frac{9}{4}=1-a \\
& \Rightarrow a=-1 \frac{1}{4} .
\end{aligned}
$$

17. Show that

$$
\begin{equation*}
(x+1)(x+3)(x+4)-x\left(x^{2}+7 x+11\right) \tag{5}
\end{equation*}
$$

can be written in the form

$$
(x+a)(x+b),
$$

where a and b are positive integers.

Solution			
	\times	x	+1
	x	x^{2}	$+x$
	+3	$+3 x$	+3

so

$$
(x+1)(x+3)=x^{2}+4 x+3
$$

and

\times	x^{2}	$+4 x$	+3
x	x^{3}	$+4 x^{2}$	$+3 x$
+4	$+4 x^{2}$	$+16 x$	+12

so

$$
\left(x^{2}+4 x+3\right)(x+4)=x^{3}+8 x^{2}+19 x+12 .
$$

Finally,

$$
\begin{aligned}
& (x+1)(x+3)(x+4)-x\left(x^{2}+7 x+11\right) \\
= & \left(x^{3}+8 x^{2}+19 x+12\right)-\left(x^{3}+7 x^{2}+11 x\right) \\
= & x^{2}+8 x+12 \\
& \left.\begin{array}{cc}
\text { add to: } & +8 \\
& \text { multiply to: }+12
\end{array}\right\}+6,+2 \\
= & \underline{\underline{(x+6)(x+2)} ;}
\end{aligned}
$$

hence,

$$
\underline{\underline{a=6}} \text { and } \underline{\underline{b=2}}
$$

or vice versa.
18. Solve

$$
4(x-5)^{2}=k^{2}
$$

where k is a constant.
Give your answers in their simplest form in terms of k.

Solution

$$
\begin{aligned}
4(x-5)^{2}=k^{2} & \Rightarrow(x-5)^{2}=\frac{1}{4} k^{2} \\
& \Rightarrow(x-5)^{2}=\left(\frac{1}{2} k\right)^{2} \\
& \Rightarrow x-5= \pm \frac{1}{2} k \\
& \Rightarrow x=5 \pm \frac{1}{2} k .
\end{aligned}
$$

19. - $A B C$ is a right-angled triangle.

- $A C D$ is an isosceles triangle.
- All dimensions are in centimetres.

Not drawn accurately
(a) Show that $A C=5 x$. Zir Olicer

Solution

$$
\begin{aligned}
A C^{2}=A B^{2}+B C^{2} & \Rightarrow A C^{2}=(3 x)^{2}+(4 x)^{2} \\
& \Rightarrow A C^{2}=9 x^{2}+16 x^{2} \\
& \Rightarrow A C^{2}=25 x^{2} \\
& \Rightarrow A C=5 x
\end{aligned}
$$

as required.
(b) Work out an expression, in cm^{2}, for the area of quadrilateral $A B C D$.

Give your answer in the form $p x^{2}$, where p is an integer.

Solution

Let E be the midpoint of $A C$. Then $A E=2.5 x$ and

$$
\begin{aligned}
A D^{2}=A E^{2}+D E^{2} & \Rightarrow(6.5 x)^{2}=(2.5 x)^{2}+D E^{2} \\
& \Rightarrow 42.25 x^{2}=6.25 x^{2}+D E^{2} \\
& \Rightarrow D E^{2}=36 x^{2} \\
& \Rightarrow D E=6 x .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\text { area } & =\text { area of } A B C+\text { area of } A C D \\
& =\left(\frac{1}{2} \times 3 x \times 4 x\right)+\left(\frac{1}{2} \times 5 x \times 6 x\right) \\
& =6 x^{2}+15 x^{2} \\
& =\underline{21 x^{2} \mathrm{~cm}^{2}} .
\end{aligned}
$$

hence, $p=21$.
20. - A, B, C, and D are points on a circle.

- D, E, and F are points on a different circle, centre C.
- $D C E, A D F$, and $B C F$ are straight lines.
- Angle $D E F=x$.

(a) Prove that
angle $B A D=2 x$.

Solution

Well, $\angle E F C=x$ (base angles)
$\angle E C F=180-2 x$ (completing the triangle)
$\angle B C D=180-2 x$ (vertically opposite angles)
$\underline{\underline{\angle B A D}=2 x}$ (opposite angles in a cyclic quadrilateral).
(b) In the case when $A B$ is parallel to $D E$, work out the size of angle x.

Solution

Now, $\angle B A D=\angle E D F=2 x$ (corresponding angles)
$\angle D F E=90^{\circ}$ (why?) and

$$
\begin{aligned}
\angle E D F+\angle D F E+\angle F E D=180 & \Rightarrow 2 x+90+x=180 \\
& \Rightarrow 3 x=90 \\
& \Rightarrow \underline{\underline{x=30}} .
\end{aligned}
$$

21. $A B C D E F G H$ is a cuboid.

- $B C=15 \mathrm{~cm}$.
- $C D=12 \mathrm{~cm}$.
- $D H=8 \mathrm{~cm}$.

Work out the size of the angle between the line $C E$ and the plane $C D H G$.

Solution

Well, the space diagonal is

$$
\begin{aligned}
C E^{2}=C D^{2}+D H^{2}+B C^{2} & \Rightarrow C E^{2}=12^{2}+8^{2}+15^{2} \\
& \Rightarrow C E^{2}=144+64+225 \\
& \Rightarrow C E^{2}=433 \\
& \Rightarrow C E=\sqrt{433} .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\sin =\frac{\text { opp }}{\text { hyp }} & \Rightarrow \sin (\text { angle })=\frac{B C}{C E} \\
& \Rightarrow \sin (\text { angle })=\frac{15}{\sqrt{433}} \\
& \Rightarrow \text { angle }=46.12503309(\mathrm{FCD}) \\
& \Rightarrow \text { angle }=46.1^{\circ}(3 \mathrm{sf}) .
\end{aligned}
$$

22. (a) Show that
is equivalent to $\tan x$.

Solution

$$
\begin{aligned}
\frac{2 \sin ^{2} x-1+\cos ^{2} x}{\sin x \cos x} & \equiv \frac{\sin ^{2} x-1+\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin x \cos x} \\
& \equiv \frac{\sin ^{2} x-1+1}{\sin x \cos x} \\
& \equiv \frac{\sin ^{2} x}{\sin x \cos x} \\
& \equiv \frac{\sin x}{\cos x} \\
& \equiv \underline{\underline{\tan x}},
\end{aligned}
$$

as required.
(b) Hence solve

$$
\begin{equation*}
\frac{2 \sin ^{2} x-1+\cos ^{2} x}{\sin x \cos x}=-1 \tag{2}
\end{equation*}
$$

for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

Solution

$$
\begin{aligned}
\frac{2 \sin ^{2} x-1+\cos ^{2} x}{\sin x \cos x}=-1 & \Rightarrow \tan x=-1 \\
& \Rightarrow \underline{\underline{x=135,315}}
\end{aligned}
$$

23. A circle has centre C and equation

$$
(x-1)^{2}+(y+3)^{2}=25
$$

$P(4,-7)$ and Q are points on the circle.

- The tangent at Q is parallel to the x-axis.
- The tangents at P and Q intersect at point R.

(a) Write down the coordinates of C.

Solution

$\underline{C(1,-3)}$.
(b) Show that the equation of the tangent at Q is

$$
y=2 .
$$

Solution

$$
\begin{aligned}
x=1 & \Rightarrow(y+3)^{2}=25 \\
& \Rightarrow y+3= \pm 5 \\
& \Rightarrow y=-3 \pm 5 ;
\end{aligned}
$$

in other words, $y=-8$ or $y=2$.
As $y>0, \underline{\underline{y=2}}$, as required.
(c) Work out the x-coordinate of R.

Solution

Well,

$$
\begin{aligned}
m_{C P} & =\frac{-7-(-3)}{4-1} \\
& =-\frac{4}{3}
\end{aligned}
$$

and

$$
m_{P R}=-\frac{1}{-\frac{4}{3}}=\frac{3}{4},
$$

as $\angle C P R$ is a right-angle. Now, the equation of the line $P R$ is

$$
\begin{aligned}
y-(-7)=\frac{3}{4}(x-4) & \Rightarrow y+7=\frac{3}{4} x-3 \\
& \Rightarrow y=\frac{3}{4} x-10 .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
y=2 & \Rightarrow 2=\frac{3}{4} x-10 \\
& \Rightarrow \frac{3}{4} x=12 \\
& \Rightarrow \underline{x=16} .
\end{aligned}
$$

24. Show that the curve

$$
\begin{equation*}
y=\frac{3}{5} x^{5}+x^{4} \tag{4}
\end{equation*}
$$

has exactly two stationary points.

Solution

$$
y=\frac{3}{5} x^{5}+x^{4} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{4}+4 x^{3}
$$

and

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x}=0 & \Rightarrow 3 x^{4}+4 x^{3}=0 \\
& \Rightarrow x^{3}(3 x+4)=0 \\
& \Rightarrow x^{3}=0 \text { or } 3 x+4=0 \\
& \Rightarrow x=0 \text { or } x=-\frac{4}{3}
\end{aligned}
$$

hence, the curve has exactly two stationary points.
25.

$$
\begin{equation*}
\mathrm{f}(x)=x^{3}-10 x-c, \text { where } c \text { is a positive integer. } \tag{3}
\end{equation*}
$$

$(x+c)$ is a factor of $\mathrm{f}(x)$.
Use the factor theorem to work out the value of c.

Solution

Well, $(x+c)=[x-(-c)]$ and

$$
\begin{aligned}
\mathrm{f}(-c)=0 & \Rightarrow(-c)^{3}-10(-c)-c=0 \\
& \Rightarrow-c^{3}+10 c-c=0 \\
& \Rightarrow c^{3}-9 c=0 \\
& \Rightarrow c\left(c^{2}-9\right)=0 \\
& \Rightarrow c(c-3)(c+3)=0 \\
& \Rightarrow c=0, c=3, \text { or } c=-3
\end{aligned}
$$

now, c is a positive integer and so $\underline{\underline{c=3}}$.
26. $\mathrm{f}(x)$ is a function with domain all values of x.

$$
\begin{equation*}
\mathrm{f}(x)=x^{2}+6 x-a, \text { where } a \text { is a constant. } \tag{4}
\end{equation*}
$$

Work out the possible values of a.
Give your answer as an inequality.

Solution

$$
\mathrm{f}(x)=x^{2}+6 x-a \Rightarrow \mathrm{f}^{\prime}(x)=2 x+6
$$

and

$$
\begin{aligned}
\mathrm{f}^{\prime}(x)=0 & \Rightarrow 2 x+6=0 \\
& \Rightarrow 2 x=-6 \\
& \Rightarrow x=-3 .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
x=-3 & \Rightarrow(-3)^{2}+6(-3)-a \geqslant 0 \\
& \Rightarrow 9-18-a \geqslant 0 \\
& \Rightarrow \underline{\underline{a \leqslant-9}} .
\end{aligned}
$$

27. The curve $y=\mathrm{f}(x)$ has

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=(x+2)^{6}+(x+2)^{4} \tag{3}
\end{equation*}
$$

The curve has exactly one stationary point at P where $x=-2$.
Use the expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to show that P is a point of inflection.

Solution

Pick, say, $x=-3$ and $x=-1$:

$$
x=-3 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=(-3+2)^{6}+(-3+2)^{4}=2
$$

and

$$
x=-1 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=(-1+2)^{6}+(-1+2)^{4}=2
$$

so, either side of P the derivative is positive.
Hence, P is a point of inflection.

