Dr Oliver Mathematics GCSE Mathematics 2021 November Paper 1H: Non-Calculator 1 hour 30 minutes

The total number of marks available is 80 .
You must write down all the stages in your working.

1. (a) Work out

$$
3.67 \times 4.2
$$

Solution

		3^{12}	6^{12}	7
\times			4	2
		7	3	4
1	4_{1}	6_{1}	8	
1	5	4	1	4

After the decimal point: two digits in the first number (67) and one number in the second (2), we need three. Hence,

$$
3.67 \times 4.2=\underline{\underline{15.414}} .
$$

(b) Work out

$$
59.84 \div 1.6
$$

Solution

1.6			7	4
			8	

| 4 | 8 | | |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 8 | .4 |

1	1	2	
		6	.4

$6 \quad .4$

Hence,

$$
59.84 \div 1.6=\underline{\underline{37.4}} .
$$

2. $\mathscr{E}=\{$ even numbers less than 19$\}$.
$A=\{6,12,18\}$.
$B=\{2,6,14,18\}$.
Complete the Venn diagram for this information.

3. Work out
$4 \frac{1}{5}-2 \frac{2}{3}$.
Give your answer as a mixed number.

Solution

$$
\begin{aligned}
4 \frac{1}{5}-2 \frac{2}{3} & =2+\frac{1}{5}-\frac{2}{3} \\
& =2+\frac{3}{15}-\frac{10}{15} \\
& =2-\frac{7}{15} \\
& =\underline{\underline{1 \frac{8}{15}}} .
\end{aligned}
$$

4. At the end of 2017,

- the value of Tamara's house was $£ 220000$ and
- the value of Rahim's house was $£ 160000$.

At the end of 2019,

- the value of Tamara's house had decreased by 20% and
- at the value of Rahim's house had increased by 30%.

At the end of 2019, whose house had the greater value?
You must show how you get your answer.

Solution

Tamara's house is now worth

$$
\begin{aligned}
220000-(220000 \times 0.2) & =220000-44000 \\
& =176000
\end{aligned}
$$

and Rahim's house is now worth

$$
\begin{aligned}
160000+(160000 \times 0.3) & =160000+48000 \\
& =208000
\end{aligned}
$$

Hence, Rahim's house is now more.
5. Rosie, Matilda and Ibrahim collect stickers:

Rosie : Matilda: $\operatorname{Ibrahim}=4: 7: 15$.
Ibrahim has 24 more stickers than Matilda.

Ibrahim has more stickers than Rosie.
How many more?

Solution

Well, suppose there are s stickers. Now,

$$
4+7+15=26
$$

and

$$
\begin{aligned}
\left(\frac{15-7}{26}\right) \times s=24 & \Rightarrow \frac{8}{26} \times s=24 \\
& \Rightarrow 8 s=624 \\
& \Rightarrow s=\frac{624}{8} \\
& \Rightarrow s=78
\end{aligned}
$$

So,

$$
\begin{aligned}
\text { Rosie has } & =\frac{4}{26} \times 78=4 \times 3=12 \\
\text { Matilda has } & =\frac{7}{26} \times 78=7 \times 3=21 \\
\text { Ibrahim has } & =\frac{13}{26} \times 78=15 \times 3=45
\end{aligned}
$$

Ibrahim has

$$
45-12=\underline{\underline{33} \text { stickers }}
$$

than Rosie.
6. The diagram shows a prism.

The cross section of the prism is a right-angled triangle.
The base of the triangle has length 5 cm .

The prism has length 25 cm .
The prism has volume $750 \mathrm{~cm}^{3}$.
Work out the height of the prism.

Solution

Let $h \mathrm{~cm}$ be the height of the prism. Then

$$
\begin{aligned}
\left(\frac{1}{2} \times 5 \times h\right) \times 25=750 & \Rightarrow \frac{1}{2} \times 5 \times h=30 \\
& \Rightarrow \frac{1}{2} \times h=6 \\
& \Rightarrow \underline{\underline{h=12}} .
\end{aligned}
$$

7. The diagram shows a cube with edges of length $x \mathrm{~cm}$ and a sphere of radius 3 cm .

The surface area of the cube is equal to the surface area of the sphere.

Show that

$$
x=\sqrt{k \pi},
$$

where k is an integer.

Solution

Well,

$$
\begin{aligned}
6 x^{2}=4 \times \pi \times 3^{2} & \Rightarrow 6 x^{2}=36 \pi \\
& \Rightarrow x^{2}=6 \pi \\
& \Rightarrow x=\sqrt{6 \pi} ;
\end{aligned}
$$

hence, $\underline{\underline{k=6}}$.
8. Solve

$$
x^{2}=5 x+24 .
$$

Solution

$$
\begin{aligned}
x^{2}=5 x+24 & \Rightarrow x^{2}-5 x-24=0 \\
& \left.\begin{array}{rl}
\text { add to: } & -5 \\
\text { multiply to: } & -24
\end{array}\right\}-8,+3 \\
& \Rightarrow(x-8)(x+3)=0 \\
& \Rightarrow x-8=0 \text { or } x+3=0 \\
& \Rightarrow x=8 \text { or } x=-3
\end{aligned} .
$$

9. (a) Write down the value of

$$
7^{0}
$$

Solution

$$
7^{0}=\underline{\underline{1}} .
$$

(b) Find the value of

$$
\begin{equation*}
3 \times 3^{6} \times 3^{-6} \tag{1}
\end{equation*}
$$

Solution

$$
3 \times 3^{6} \times 3^{-6}=\underline{\underline{3}} .
$$

(c) Find the value of

$$
2^{-4}
$$

Solution

$$
2^{-4}=\frac{1}{2^{4}}=\frac{\frac{1}{16}}{\underline{\underline{16}}} .
$$

(d) Find the value of

Solution

$$
27^{\frac{1}{3}}=\sqrt[3]{27}=\underline{\underline{3}}
$$

10. The diagram shows a shape made from 6 identical squares.

The total area of the shape is $5406 \mathrm{~cm}^{2}$.
(a) Find an estimate for the length of one side of each square.

Give your answer correct to the nearest whole number.

Solution

Let $x \mathrm{~cm}$ be the length of one side. Now, the area of one small square is

$$
\frac{5406}{6}=901
$$

and the length is

$$
\begin{aligned}
x^{2}=901 & \Rightarrow x^{2} \approx 900 \\
& \Rightarrow \underline{\underline{x}=30}
\end{aligned}
$$

(b) Is your answer to part (a) an underestimate or an overestimate?

You must give a reason for your answer.

Solution

It is an underestimate as we went from $x^{2}=901$ to $x^{2} \approx 900$.
11. The diagram shows two rectangles, \mathbf{A} and \mathbf{B}.

All measurements are in centimetres.
The area of rectangle \mathbf{A} is equal to the area of rectangle \mathbf{A}.
Find an expression for y in terms of w.

Solution

The areas are equal:

$$
\begin{aligned}
6(2 w+y)=7 w(3 y+6) & \Rightarrow 12 w+6 y=21 w y+42 w \\
& \Rightarrow 6 y-21 w y=30 w \\
& \Rightarrow 3 y(2-7 w)=30 w \\
& \Rightarrow=\frac{30 w}{3(2-7 w)}
\end{aligned}
$$

12. The cumulative frequency table gives information about the heights, in cm, of 40 plants.

Height, $(h \mathrm{~cm})$	Cumulative Frequency
$0<h \leqslant 5$	4
$0<h \leqslant 10$	11
$0<h \leqslant 15$	24
$0<h \leqslant 20$	34
$0<h \leqslant 25$	38
$0<h \leqslant 30$	40

(a) On the grid, draw a cumulative frequency graph for this information.

Solution

(b) Solution

The median is at the

$$
\frac{40+1}{2}=20 \frac{1}{2} \text { place : }
$$

Correct read-off: about 13.6 cm .
13. Ted is trying to change
to a fraction.
Here is the start of his method.

$$
\begin{aligned}
& x=0 . \dot{4} \dot{3} \\
& 10 x=4 . \dot{3} \dot{4} \\
& 10 x-x=4 . \dot{3} \dot{4}-0 . \ddot{4} \dot{3}
\end{aligned}
$$

Evaluate Ted's method so far.

Solution

Not bad - but he has made a mistake: rather than

$$
10 x=4 . \dot{3} \dot{4}
$$

he should have used

$$
100 x=43 . \dot{4} \dot{3}
$$

14. Here is a shape with all its measurements in centimetres.

The area of the shape is $A \mathrm{~cm}^{2}$.
Show that

$$
A=2 x^{2}+24 x+46
$$

Solution

Well,

$$
(2 x+6)-(x+1)=x+5
$$

so we can look at a rectangle $(x+11) \times(2 x+6)$ minus $4 \times(x+5)$.

\times	x	+11
$2 x$	$2 x^{2}$	$+22 x$
+6	$+6 x$	+66

So

$$
\begin{aligned}
A & =(x+11)(2 x+6)-4(x+5) \\
& =\left(2 x^{2}+28 x+66\right)-(4 x+20) \\
& =\underline{\underline{2 x^{2}+24 x+46}},
\end{aligned}
$$

as required.
15. Show that

$$
\frac{4 x+3}{2 x}+\frac{3}{5}
$$

can be written in the form

$$
\frac{a x+b}{c x},
$$

where a, b, and c are integers.

Solution

$$
\begin{aligned}
\frac{4 x+3}{2 x}+\frac{3}{5} & =\frac{20 x+15}{10 x}+\frac{6 x}{10 x} \\
& =\frac{(20 x+15)+6 x}{10 x} \\
& =\underline{\underline{\frac{26 x+15}{10 x}} ;}
\end{aligned}
$$

hence,

$$
a=26, b=15, \text { and } c=10 .
$$

16. There are only 3 red counters and 5 yellow counters in a bag.

Jude takes at random 3 counters from the bag.
Work out the probability that he takes exactly one red counter.

Solution

'Exactly one red counter' means

$$
\binom{3}{1}=3
$$

and the

$$
\begin{aligned}
\mathrm{P}(\text { exactly one red counter }) & =3 \times \frac{3}{8} \times \frac{5}{7} \times \frac{4}{6} \\
& =3 \times \frac{1}{2} \times \frac{5}{7} \times \frac{1}{2} \\
& =\frac{15}{\underline{\underline{28}}} .
\end{aligned}
$$

17. On the grid show, by shading, the region that satisfies all of these inequalities:

$$
2 y+4<x \quad x<3 \quad y<6-3 x .
$$

Label the region \mathbf{R}.

Solution

18. Here is trapezium $A B C D$.

The area of the trapezium is $66 \mathrm{~cm}^{2}$.

The length of $A B$: the length of $C D=2: 3$.
Find the length of $A B$.

Solution

Let E be the foot of the perpendicular from B down to $C D$. Then

$$
\begin{aligned}
\sin =\frac{o p p}{\text { hyp }} & \Rightarrow \sin 30^{\circ}=\frac{B E}{6} \\
& \Rightarrow B E=6 \sin 30^{\circ} \\
& \Rightarrow B E=3 \mathrm{~cm} .
\end{aligned}
$$

Now,
the length of $A B$: the length of $C D=2: 3$
which means

$$
\text { the length of } A B \text { : the length of } C D=1: 1.5
$$

Now,

$$
\begin{aligned}
\frac{1}{2} \times 3 \times(A B+C D)=66 & \Rightarrow 3 \times\left(A B+\frac{3}{2} A B\right)=132 \\
& \Rightarrow \frac{5}{2} A B=44 \\
& \Rightarrow 5 A B=88 \\
& \Rightarrow A B=17.6 \mathrm{~cm}
\end{aligned}
$$

19. Show that

$$
\begin{equation*}
\frac{8+\sqrt{12}}{5+\sqrt{3}} \tag{4}
\end{equation*}
$$

can be written in the form

$$
\frac{a+\sqrt{3}}{b}
$$

where a and b are integers.

Solution

Now,

$$
\begin{aligned}
\sqrt{12} & =\sqrt{4 \times 3} \\
& =\sqrt{4} \times \sqrt{3} \\
& =2 \sqrt{3}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{8+\sqrt{12}}{5+\sqrt{3}} & =\frac{8+2 \sqrt{3}}{5+\sqrt{3}} \\
& =\frac{8+2 \sqrt{3}}{5+\sqrt{3}} \times \frac{5-\sqrt{3}}{5-\sqrt{3}}
\end{aligned}
$$

\times	8	$+2 \sqrt{3}$
5	40	$+10 \sqrt{3}$
$-\sqrt{3}$	$-8 \sqrt{3}$	-6

\times	5	$+\sqrt{3}$
5	25	$+5 \sqrt{3}$
$-\sqrt{3}$	$-5 \sqrt{3}$	-3

$$
\begin{aligned}
& =\frac{34+2 \sqrt{3}}{22} \\
& =\underline{\underline{17+\sqrt{3}}} \overline{11}
\end{aligned}
$$

hence,

$$
a=17, b=1, \text { and } c=11 .
$$

20. The diagram shows the graph of

$$
x^{2}+y^{2}=30.25
$$

Use the graph to find estimates for the solutions of the simultaneous equations

$$
\begin{aligned}
x^{2}+y^{2} & =30.25 \\
y-2 x & =1 .
\end{aligned}
$$

Solution

$$
y-2 x=1 \Rightarrow y=2 x+1:
$$

Read-off the intersections between the curve and the line:

$$
x=-2.85, y=-4.7 \text { or } x=2.05, y=5.1
$$

21. The functions f and g are such that

$$
\mathrm{f}(x)=3 x^{2}+1 \text { for } x>0
$$

and

$$
\mathrm{g}(x)=\frac{4}{x^{2}} \text { for } x>0
$$

(a) Work out $\mathrm{g} \mathrm{f}(1)$.

Solution

$$
\begin{aligned}
\mathrm{gf}(1) & =\mathrm{g}(\mathrm{f}(1)) \\
& =\mathrm{g}(4) \\
& =\frac{4}{4^{2}} \\
& =\frac{1}{4} .
\end{aligned}
$$

The function h is such that

$$
h=(\mathrm{fg})^{-1}
$$

(b) Find $\mathrm{h}(x)$.

Solution

Well,

$$
\begin{aligned}
\mathrm{fg}(x) & =\mathrm{f}(\mathrm{~g}(x)) \\
& =\mathrm{f}\left(\frac{4}{x^{2}}\right) \\
& =3\left(\frac{4}{x^{2}}\right)^{2}+1 \\
& =\frac{48}{x^{4}}+1 .
\end{aligned}
$$

Now,

$$
\begin{aligned}
y=\frac{48}{x^{4}}+1 & \Rightarrow y-1=\frac{48}{x^{4}} \\
& \Rightarrow \frac{1}{y-1}=\frac{x^{4}}{48} \\
& \Rightarrow \frac{148}{y-1}=x^{4} \\
& \Rightarrow \sqrt[4]{\frac{48}{y-1}}=x
\end{aligned}
$$

hence,

$$
h(x)=\sqrt[4]{\frac{48}{x-1}} .
$$

22. Find the coordinates of the turning point on the curve with equation

$$
\begin{equation*}
y=9+18 x-3 x^{2} \tag{4}
\end{equation*}
$$

You must show all your working.

Solution

Well,

$$
\begin{aligned}
y & =9+18 x-3 x^{2} \\
& =9-3\left(x^{2}-6 x\right) \\
& =9-3\left[\left(x^{2}-6 x+9\right)-9\right] \\
& =9-3\left[(x-3)^{2}-9\right] \\
& =9-3(x-3)^{2}+27 \\
& =36-3(x-3)^{2} ;
\end{aligned}
$$

hence, the turning point is $(3,36)$.
Zn Oliwer

