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Further Pure Mathematics

Induction

Past Examination Questions

This booklet consists of 30 questions across a variety of examination topics.
The total number of marks available is 227.

1.
fpnq ” 24ˆ 24n

` 34n, n P N.

(a) (5)Write down fpn` 1q ´ fpnq.

(b) (4)Prove, by induction, that fpnq is divisible by 5 for all n P N.

2. (6)Prove, by induction, that

n
ÿ

r“1

rpr ` 3q “ 1
3
npn` 1qpn` 5q

for all n P N.

3. Prove, by induction, that pcos θ ` i sin θqn ” cosnθ ` i sinnθ, n P N.

4. (8)Prove that the expression
7n
` 4n

` 1

is divisible by 6 for all n P N.

5. (8)Prove that the expression
4n
` 6n´ 1

is divisible by 9 for all n P Z`.

6. (8)Prove that the expression
34n´1

` 24n´1
` 5

is divisible by 10 for all positive integers n.

7. (a) (1)Express
6x` 10

x` 3
in the form p`

q

x` 3
, where p and q are integers to be found.

The sequence of real numbers u1, u2, u3, . . . is such that u1 “ 5.2 and un`1 “
6un ` 10

un ` 3
.

(b) (4)Prove by induction that un ą 5 for n P Z`.
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8. (5)Prove, by induction, that, for n P Z`,

n
ÿ

r“1

r2r
“ 2 r1` pn´ 1q2n

s .

9. (5)

A “

¨

˝

1 1 2
0 1 1
0 0 1

˛

‚.

Prove by induction, that for all positive integers n,

An
“

¨

˝

1 n 1
2
pn2 ` 3nq

0 1 n
0 0 1

˛

‚.

10. (5)Prove by induction, for n P Z`,
n
ÿ

r“1

p2r ´ 1q2 “ 1
3
np2n´ 1qp2n` 1q.

11. (5)De Moivre’s theorem states that

pcos θ ` i sin θqn ” cosnθ ` i sinnθ, n P R.

Use induction to prove de Moivre’s theorem for n P Z`.

12. (5)Prove by induction, for n P Z`,

n
ÿ

r“1

1

rpr ` 1q
“

n

n` 1
.

13. (5)A series of positive integers u1, u2, u3, . . . is defined by

u1 “ 6 and un`1 “ 6un ´ 5, for n ě 1.

Prove by induction that un “ 5ˆ 6n´1 ` 1, for n ě 1.

14. Prove by induction, for n P Z`,

(a) (5)

ˆ

cos θ ´ sin θ
sin θ cos θ

˙n

“

ˆ

cosnθ ´ sinnθ
sinnθ cosnθ

˙

,

(b) (5)p4n` 3q5n ´ 3 is divisible by 16.

15. Prove by induction, for n P Z`,

2
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(a) (5)

¨

˝

1 0 0
1 1 0
3 2 1

˛

‚

n

“

¨

˝

1 0 0
n 1 0

npn` 2q 2n 1

˛

‚,

(b) (5)p23n`1 ` 5q is divisible by 7.

16. Prove by induction, for n P Z`,

(a) (7)fpnq ” 5n ` 8n` 3 is divisible by 4,

(b) (7)

ˆ

3 ´2
2 ´1

˙n

“

ˆ

2n` 1 ´2n
2n 1´ 2n

˙

.

17. (4)A sequence of numbers is defined by

u1 “ 2,

un`1 “ 5un ´ 4, n ě 1.

Prove by induction that, n P Z`, un “ 5n´1 ` 1.

18.
fpnq ” 2n

` 6n.

(a) (3)Show that fpk ` 1q “ 6 fpkq ´ 4ˆ 2k.

(b) (4)Hence, or otherwise, prove by induction that, n P Z`, fpnq is divisible by 8.

19. (5)A series of positive integers u1, u2, u3, . . . is defined by

u1 “ 2 and un`1 “ 4un ` 2, for n ě 1.

Prove by induction that un “
2
3
p4n ´ 1q.

20. (a) (6)

ˆ

3 0
6 1

˙n

“

ˆ

3n 0
3p3n ´ 1q 1

˙

.

(b) (6)fpnq ” 72n´1 ` 5 is divisible by 12.

21. A sequence can be described by the recurrence formula

u1 “ 1 and un`1 “ 2un ` 1, for n ě 1.

(a) (2)Find u2 and u3.

(b) (5)Prove by induction that un “ 2n ´ 1.

22. (6)Prove by induction, for n P Z`,

fpnq ” 22n´1
` 32n´1 is divisible by 5.

3
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23. (a) (6)Prove by induction that, for n P Z`,

n
ÿ

r“1

rpr ` 3q “ 1
3
npn` 1qpn` 5q.

(b) (5)A sequence can be described by the recurrence formula

u1 “ 1 and un`1 “ un ` np3n` 1q, for n ě 1.

Prove by induction that
un “ n2

pn´ 1q ` 1.

24. (a) (5)A sequence can be described by the recurrence formula

u1 “ 8 and un`1 “ 4un ´ 9n, for n ě 1.

Prove by induction that, for n P Z`

un “ 4n
` 3n` 1.

(b) (5)Prove by induction that, for m P Z`,

ˆ

3 ´4
1 ´1

˙m

“

ˆ

2m` 1 ´4m
m 1´ 2m

˙

.

25. (6)Prove by induction that, n P Z`,

n
ÿ

r“1

rp2r ´ 1q “ 1
6
npn` 1qp4n´ 1q.

26. Prove by induction that, n P Z`,

fpnq ” 8n
´ 2n

is divisible by 6.

27. (a) (5)Prove by induction that, for n P Z`,

n
ÿ

r“1

pr ` 1q2r´1
“ n2n.

4
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(b) (7)A sequence can be described by the recurrence formula

u1 “ 0,

u2 “ 32,

un`2 “ 6un`1 ´ 8un, n ě 1.

Prove by induction that, for n P Z`,

un “ 4n`1
´ 2n`3.

28. (a) (6)Prove by induction that, n P Z`,
ˆ

1 0
´1 5

˙n

“

ˆ

1 0
´1

4
p5n ´ 1q 5n

˙

.

(b) (6)Prove by induction that, n P Z`,

n
ÿ

r“1

p2r ´ 1q2 “ 1
3
np4n2

´ 1q.

29. (5)(a) (5)Prove by induction that, n P Z`,

n
ÿ

r“1

2r ` 1

r2pr ` 1q2
“ 1´

1

pn` 1q2
.

(b) (5)A sequence of positive rational numbers is defined by

u1 “ 3,

un`1 “
1
3
un `

8
9
, n P Z`.

Prove by induction that, n P Z`,

un “ 5ˆ
`

1
3

˘n
` 4

3
.

30. (a) (6)A sequence of numbers is defined by

u1 “ 6,

u2 “ 27,

un`2 “ 6un`1 ´ 9un, n ě 1.

Prove by induction that, n P Z`,

un “ 3n
pn` 1q.

(b) (6)Prove by induction that, n P Z`,

fpnq “ 33n´2
` 23n`1

is divisible by 19.
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