Dr Oliver Mathematics AQA Further Maths Level 2 June 2021 Paper 1 1 hour 30 minutes

The total number of marks available is 80.

You must write down all the stages in your working.

You are **not** permitted to use a scientific or graphical calculator in this paper.

1. Work out the distance between the points A(-3,7) and B(5,1).

Solution

$$AB = \sqrt{[5 - (-3)]^2 + (7 - 1)^2}$$

$$= \sqrt{8^2 + 6^2}$$

$$= \sqrt{64 + 36}$$

$$= \sqrt{100}$$

$$= 10 \text{ cm.}$$

(2)

2. $y = x(2x^4 - 7x^3). ag{3}$

Work out an expression for the rate of change of y with respect to x.

Solution

$$y = x(2x^4 - 7x^3) \Rightarrow y = 2x^5 - 7x^4$$
$$\Rightarrow \frac{dy}{dx} = 10x^4 - 28x^3.$$

3. Here are four sketch graphs. (1)

Dr. Oliver.

Circle the letter of the sketch graph that represents

$$3x + 2y = 5.$$

Solution

$$3x + 2y = 5 \Rightarrow 2y = -3x + 5$$
$$\Rightarrow y = -\frac{3}{2}x + \frac{5}{2}$$

so the answer is $\underline{\underline{\mathbf{B}}}$.

4. The function f is given by

$$f(x) = 3x - 5.$$

The range is

(a) Work out the domain of the function.

(1)

Solution

Well,

$$3x - 5 = 13 \Rightarrow 3x = 18$$
$$\Rightarrow x = 6$$

and

$$3x - 5 = 19 \Rightarrow 3x = 24$$
$$\Rightarrow x = 8$$

hence, the domain of the function is 6 < x < 8.

The function g is given by

$$g(x) = x^2 - 4$$

with domain -1 < x < 3.

(b) Work out the range of the function.

(2)

Solution

Dr Oliver Mathematics

Dr Oliver Mathematics

Hence, the range of the function is $\underline{-4 \leqslant g(x) < 5}$.

The function h is given by

$$h(x) = \frac{3+x}{2}.$$

(c) Work out $h^{-1}(x)$.

Solution

$$y = \frac{3+x}{2} \Rightarrow 2y = 3+x$$
$$\Rightarrow 2y - 3 = x$$

(2)

and

$$h^{-1}(x) = \underline{\underline{2x-3}}.$$

5. The nth term of a sequence is

$$\frac{2n+47}{n+1}.$$

A term of the sequence has a value of 5.

(a) Work out the value of n.

(2)

Solution

$$\frac{2n+47}{n+1} = 5 \Rightarrow 2n+47 = 5(n+1)$$

$$\Rightarrow 2n+47 = 5n+5$$

$$\Rightarrow 42 = 3n$$

$$\Rightarrow \underline{n=14}.$$

(b) Write down the limiting value of the sequence as $n \to \infty$.

(1)

Solution

Divide top and bottom by n:

$$\frac{2n+47}{n+1} = \frac{2 + \frac{47}{n}}{1 + \frac{1}{n}}$$

$$\to \frac{2+0}{1+0}$$

$$= \underline{2}$$

as $n \to \infty$.

6. Here is a sketch of

(2)

 $y = \sin x$

for

$$0^{\circ} \leqslant x \leqslant 360^{\circ}$$
.

You are given that

$$\sin 220^\circ = -k.$$

Work out the two values of x for $0^{\circ} \le x \le 360^{\circ}$ for which y = k.

Solution

Well,

$$\sin 220^{\circ} = \sin(180 + 40)^{\circ}$$

so $\sin(180-40)^{\circ}$ has the opposite sign to $\sin(180+40)^{\circ}$.

Hence, the two values are $\sin 40^{\circ}$ and $\sin 140^{\circ}$.

7. Solve

$$2x^2 + 4 > (2x - 3)(x + 1).$$

(3)

(2)

Solution

$$\begin{array}{c|cccc} \times & 2x & -3 \\ \hline x & 2x^2 & -3x \\ +1 & +2x & -3 \end{array}$$

So,

$$2x^{2} + 4 > (2x - 3)(x + 1) \Rightarrow 2x^{2} + 4 > 2x^{2} - x - 3$$
$$\Rightarrow x > -7.$$

8. Simplify

$$\sqrt{3}(\sqrt{75}+\sqrt{48}),$$

writing your answer as an integer.

Solution

Now,

$$\sqrt{3} \times \sqrt{75} = \sqrt{3 \times 75}$$
$$= \sqrt{225}$$

and

$$\sqrt{3} \times \sqrt{48} = \sqrt{3 \times 48}$$
$$= \sqrt{144}$$
$$12.$$

Hence,

$$\sqrt{3}(\sqrt{75} + \sqrt{48}) = (\sqrt{3} \times \sqrt{75}) + (\sqrt{3} \times \sqrt{48})$$

= 15 + 12
= $\underline{27}$.

9. Expand and simplify fully

$$(2x-5)(3x-4)(x+2)$$
.

(3)

Solution

Well,

$$\begin{array}{c|cccc} \times & 2x & -5 \\ \hline 3x & 6x^2 & -15x \\ -4 & -8x & +20 \\ \end{array}$$

and

$$(2x-5)(3x-4) = 6x^2 - 23x + 20.$$

×	$6x^2$	-23x	+20
\overline{x}	$6x^3$	$-23x^2$	+20x
+2	$+12x^{2}$	-46x	+40

and

$$(2x-5)(3x-4)(x+2) = 6x^3 - 11x^2 - 26x + 40.$$

10. The first four terms of a quadratic sequence are

$$0 \quad 1 \quad 0 \quad -3.$$

(3)

Work out an expression for the nth term.

Solution

Let the

$$n$$
th term = $an^2 + bn + c$.

Then

and

We compare terms:

$$2a = -2 \Rightarrow a = -1$$

$$3a + b = 6 \Rightarrow 3 \times (-1) + b = 1$$
$$\Rightarrow b = 4,$$

and

$$a+b+c=0 \Rightarrow -1+4+c=0$$

 $\Rightarrow c=-3;$

hence,

$$nth term = -n^2 + 4n - 3.$$

11.

$$\left(\begin{array}{cc} 2 & 1\\ 0 & 3 \end{array}\right) \left(\begin{array}{cc} a & b\\ 0 & 0.4 \end{array}\right) = k\mathbf{I},$$

(4)

where k is a constant and \mathbf{I} is the identity matrix.

Work out the values of a and b.

Solution

Well,

$$\left(\begin{array}{cc} 2 & 1 \\ 0 & 3 \end{array}\right) \left(\begin{array}{cc} a & b \\ 0 & 0.4 \end{array}\right) = \left(\begin{array}{cc} 2a & 2b + 0.4 \\ 0 & 1.2 \end{array}\right).$$

Now,

(1,2)th is zero
$$\Rightarrow 2b + 0.4 = 0$$

 $\Rightarrow 2b = -0.4$
 $\Rightarrow b = -0.2$

and

$$(1,1)$$
th is $1.2 \Rightarrow 2a = 1.2$
 $\Rightarrow \underline{a} = 0.6$.

12. A circle, centre C(4, -2), passes through the origin and point A(8, 0) on the x-axis. The tangent at A is shown.

Not drawn accurately

(a) Work out the equation of the circle.

(2)

Solution

$$AC^{2} = (8-4)^{2} + [(0-(-2)]^{2}$$

$$= 4^{2} + 2^{2}$$

$$= 16 + 4$$

$$= 20$$

and, hence, the equation is

 $(x-4)^2 + (y+2)^2 = 20.$

(b) Work out the equation of the tangent to the circle at A.

(3)

Solution

Well,

$$m_{AC} = \frac{0 - (-2)}{8 - 4}$$
$$= \frac{1}{2}$$

and

$$m_{\text{tangent}} = -\frac{1}{\frac{1}{2}} = -2$$

Hence, the equation of the tangent to the circle is

$$y - 0 = -2(x - 8) \Rightarrow y = -2x + 16.$$

13. Here is a sketch of

$$y = k^x$$
,

where k > 0.

 $A(2,3\frac{1}{16})$ is a point on the curve.

(a) Work out the value of k.

(2)

Solution

Well,

$$x = 2, y = 3\frac{1}{16} \Rightarrow 3\frac{1}{16} = k^{2}$$

$$\Rightarrow \frac{49}{16} = k^{2}$$

$$\Rightarrow k = \sqrt{\frac{49}{16}}$$

$$\Rightarrow k = \frac{\sqrt{49}}{\sqrt{16}}$$

$$\Rightarrow k = \frac{7}{4}$$

B is a point on the curve with x-coordinate -1.

(b) Work out the y-coordinate of B.

(1)

Solution

$$x = -1 \Rightarrow y = \left(\frac{7}{4}\right)^{-1}$$
$$\Rightarrow \underline{y = \frac{4}{7}}.$$

14. Solve the simultaneous equations:

(5)

$$4a - b + 3c = 27$$

$$3a + 2b - c = 5$$

$$2a - 5c = -7.$$

Do **not** use trial and improvement.

You **must** show your working.

Solution

$$4a - b + 3c = 27$$
 (1)

$$3a + 2b - c = 5$$
 (2)

$$2a - 5c = -7 \quad (3)$$

Do $3 \times (1)$ and $4 \times (2)$:

$$12a - 3b + 9c = 81 \quad (4)$$

$$12a + 8b - 4c = 20 \quad (5)$$

and do (4) - (5):

$$-11b + 13c = 61$$
 (6)

Now, do $2 \times (3)$:

$$4a - 10c = -14$$
 (7)

and do (1) - (7):

$$-b + 13c = 41$$
 (8)

Next, do (6) = (8):

$$-10b = 20 \Rightarrow b = -2;$$

from (6):

$$\Rightarrow -11(-2) + 13c = 61$$

$$\Rightarrow 22 + 13c = 61$$

$$\Rightarrow 13c = 39$$

$$\Rightarrow c = 3;$$

from (3):

$$\Rightarrow 2a - 5(3) = -7$$

$$\Rightarrow 2a - 15 = -7$$

$$\Rightarrow 2a = 8$$

$$\Rightarrow a = 4.$$

Hence,

$$a = 4, b = -2, \text{ and } c = 3.$$

15. Work out the value of x where $0^{\circ} \leq x \leq 90^{\circ}$ for which

$$3\tan^2 x = 1.$$

(2)

Solution

Well,

$$3\tan^2 x = 1 \Rightarrow \tan^2 x = \frac{1}{3}$$

we know $0^{\circ} \leqslant x \leqslant 90^{\circ}$:

$$\Rightarrow \tan x = \frac{1}{\sqrt{3}}$$
$$\Rightarrow \underline{x = 30}.$$

16.

$$f(x) = 200x^3 + 100x^2 - 18x - 9.$$

(a) Use the factor theorem to show that (2x + 1) is a factor of f(x).

(2)

Solution

Well,

$$f(-\frac{1}{2}) = 200[(-\frac{1}{2})]^3 + 100[(-\frac{1}{2})]^2 - 18(-\frac{1}{2}) - 9$$

= -25 + 25 + 9 - 9
= 0;

there is no remainder and, hence, (2x + 1) is a <u>factor</u> of f(x).

Marinonnari an

(3)

(3)

Solution

(b) Hence solve f(x) = 0.

Well, we can spot the first and third terms are precisely double the second and fourth terms respectively:

$$200x^{3} + 100x^{2} - 18x - 9 = 100x^{2}(2x + 1) - 9(2x + 1)$$
$$= (100x^{2} - 9)(2x + 1)$$
$$= (10x - 3)(10x + 3)(2x + 1),$$

using the difference of two squares. Finally,

$$200x^{3} + 100x^{2} - 18x - 9 = 0 \Rightarrow (10x - 3)(10x + 3)(2x + 1) = 0$$
$$\Rightarrow 10x - 3 = 0, \ 10x + 3 = 0, \ \text{or} \ 2x + 1 = 0$$
$$\Rightarrow \underline{x = \frac{3}{10}, \ x = -\frac{3}{10}, \ \text{or} \ x = -\frac{1}{2}}.$$

17. Here is the graph of

 $y = x^2 - 6x + 5,$

for values of x between 0 and 6.

Mathematics

By drawing a suitable linear graph on the grid, work out approximate solutions to

$$x^2 - 7x + 9 = 0.$$

Solution

Well,

$$x^2 - 7x + 9 = 0 \Leftrightarrow x^2 - 6x + 5 = x - 4$$

and so we need to draw on y = x - 4:

Dr Oliver Mathematics

18. Here is a triangle.

Dr Oliver

Not drawn accurately

(4)

Use the cosine rule to work out the value of x.

Solution

Now,

$$PR^{2} = PQ^{2} + QR^{2} - 2 \times PQ \times QR \times \cos PQR$$

$$\Rightarrow 7^{2} = x^{2} + 3^{2} - 2 \times x \times 3 \times \cos 60^{\circ}$$

$$\Rightarrow 49 = x^{2} + 9 - 3x$$

$$\Rightarrow x^{2} - 3x - 40 = 0$$

add to:
$$\begin{pmatrix} -3 \\ \text{multiply to:} \end{pmatrix} -8, +5$$

(4)

$$\Rightarrow (x-8)(x+5) = 0$$

$$\Rightarrow x-8 = 0 \text{ or } x+5 = 0$$

$$\Rightarrow x = 8 \text{ or } x = -5.$$

But $x \neq -5$ — it is a length! — so $\underline{x=8}$.

19. y = f(x) is the graph of a cubic function.

- y < 0 for x < 5.
- $y \ge 0$ for $x \ge 5$.

The function is

- increasing for x < -1,
- decreasing for -1 < x < 2, and
- increasing for x > 2.

Draw a possible sketch of y = f(x) for values of x from -2 to 6.

Solution

E.g.,

20. Miriam's date of birth is 14/09/2006.

She makes a 4-digit number code using digits from her date of birth.

The 4-digit number she makes must

- not start with 0 and
- have all different digits.

How many codes can she make?

Solution

She has six digits (1, 4, 0, 9, 2, or 6) and she has

- 5 choices for the first one (1-9),
- $\bullet\,$ 5 choices for the second one (all different digits),
- 4 choices for the second one (all different digits), and
- 3 choices for the second one (all different digits).

So,

$$5 \times 5 \times 4 \times 3 = \underline{300 \text{ codes}}.$$

21. ABC is a triangle.

The perpendicular from A meets BC at D.

$$BC = (6 + 2\sqrt{7}) \text{ cm}.$$

(5)

(3)

Area of triangle $ABC = (13 + 3\sqrt{7}) \text{ cm}^2$.

Work out the length, in cm, of AD. Give your answer in the form

$$a + b\sqrt{c}$$
,

where a, b, and c are integers.

Solution

Now,

$$A = \frac{1}{2}bh \Rightarrow 13 + 3\sqrt{7} = \frac{1}{2} \times (6 + 2\sqrt{7}) \times AD$$
$$\Rightarrow AD = \frac{26 + 6\sqrt{7}}{6 + 2\sqrt{7}}$$
$$\Rightarrow AD = \frac{26 + 6\sqrt{7}}{6 + 2\sqrt{7}} \times \frac{6 - 2\sqrt{7}}{6 - 2\sqrt{7}}.$$

Next,

$$\begin{array}{c|ccccc} \times & 26 & +6\sqrt{7} \\ \hline 6 & 156 & +36\sqrt{7} \\ -2\sqrt{7} & -52\sqrt{7} & -84 \end{array}$$

and

So,

$$AD = \frac{72 - 16\sqrt{7}}{8}$$
$$= \underline{\left(9 - 2\sqrt{7}\right) \text{ cm.}}$$

22. Solve

$$8^x = \frac{2^{56} - 4^{26}}{30}. (4)$$

Solution

Well,

$$2^{56} - 4^{26} \Rightarrow 2^{56} - (2^{2})^{26}$$

$$= 2^{56} - 2^{2 \times 26}$$

$$= 2^{56} - 2^{52}$$

$$= 2^{52}(2^{4} - 1)$$

$$= 2^{52}(16 - 1)$$

$$= 15 \times 2^{52}$$

and

$$8^3 = (2^3)^x = 2^{3x}.$$

Finally,

$$8^{x} = \frac{2^{56} - 4^{26}}{30} \Rightarrow 2^{3x} = \frac{15 \times 2^{52}}{30}$$
$$\Rightarrow 2^{3x} = \frac{2^{52}}{2}$$
$$\Rightarrow 2 \times 2^{3x} = 2^{52}$$
$$\Rightarrow 2^{3x+1} = 2^{52}$$
$$\Rightarrow 3x + 1 = 52$$
$$\Rightarrow 3x = 51$$
$$\Rightarrow \underline{x = 17}.$$

- 23. F, H, K, and J are points on a circle.
 - Chords HJ and KF intersect at L.
 - \bullet EFG is a tangent to the circle.
 - FH and JK are parallel.

Angle FHJ = 2x.

(a) Give reasons why angle FKJ and angle HJK are also equal to 2x.

Solution $\angle FKJ = 2x$ — angles in the same segment. $\angle HJK = 2x$ — alternate angles.

(2)

(b) Work out the values of x and y.

You **must** show your working.

Do **not** use trial and improvement.

Solution

Alternate segment theorem:

$$\angle FJH = 3y$$

and angles in a triangle:

$$2x + 3y + 98 = 180 \Rightarrow 2x + 3y = 82$$
 (1)

Angles in a triangle:

$$2x + 2x + 7y = 180 \Rightarrow 4x + 7y = 180$$
 (2)

Do $2 \times (1)$:

$$4x + 6y = 164$$
 (3)

and do (2) - (3):

$$y=16.$$

Substitute y into (1):

$$2x + 3(16) = 82 \Rightarrow 2x + 48 = 82$$
$$\Rightarrow 2x = 34$$
$$\Rightarrow x = 17.$$

Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics