## Dr Oliver Mathematics Trigonometry: Part 1

1. We have three right-angled triangles – triangles  $ABC,\,BCD,\,$  and CDE – arranged as follows.



- *ACF* is a straight line.
- AC = 25 cm and CF = 30 cm.
- $\angle CBD = 62^{\circ}$ .
- 3CD = 4CE.

Find the area of  $\triangle CEF$ , to 3 significant figures.

## Solution

Now, AB is parallel to CED (why?) which means that  $\triangle ABC$  and  $\triangle CEF$  are similar (why?). Let us call  $\angle BAC = \angle ECF = \theta^{\circ}$ .



Dr Oliver

$$3CD = 4CE \Rightarrow CD = \frac{4}{3}CE \quad (1)$$

and

$$\cos = \frac{\text{adj}}{\text{hyp}} \Rightarrow \cos \theta^{\circ} = \frac{CE}{30}$$
$$\Rightarrow CE = 30 \cos \theta^{\circ} \quad (2).$$

Next,

$$\sin = \frac{\text{opp}}{\text{hyp}} \Rightarrow \sin \theta^{\circ} = \frac{BC}{25}$$
  
 $\Rightarrow BC = 25 \sin \theta^{\circ}$  (3).



Now,

$$\tan = \frac{\text{opp}}{\text{adj}} \Rightarrow \tan 62^{\circ} = \frac{CE}{BC}$$

$$\Rightarrow BC = \frac{CE}{\tan 62^{\circ}}$$

$$\Rightarrow BC = \frac{\frac{4}{3}CE}{\tan 62^{\circ}} \text{ (by (1))}$$

$$\Rightarrow BC = \frac{4CE}{3\tan 62^{\circ}}$$

$$\Rightarrow BC = \frac{4 \times 30 \cos \theta^{\circ}}{3\tan 62^{\circ}} \text{ (by (2))}$$

$$\Rightarrow BC = \frac{40 \cos \theta^{\circ}}{\tan 62^{\circ}} \text{ (4)}.$$

So,

$$(3) = (4) \Rightarrow 25 \sin \theta^{\circ} = \frac{40 \cos \theta^{\circ}}{\tan 62^{\circ}}$$
$$\Rightarrow \frac{\sin \theta^{\circ}}{\cos \theta^{\circ}} = \frac{40}{25 \tan 62^{\circ}}$$
$$\Rightarrow \tan \theta^{\circ} = \frac{8}{5 \tan 62^{\circ}}$$
$$\Rightarrow \theta = 40.38897914 \text{ (FCD)}.$$

Dr Oliver

Finally, using area =  $\frac{1}{2}ab\sin C$ , we get

area of 
$$\triangle CEF = \frac{1}{2} \times CE \times CF \times \sin ECF$$
  
=  $\frac{1}{2} \times 30 \cos 40.388...^{\circ} \times 30 \times \sin 40.388...^{\circ}$   
=  $222.091 \, 804 \, 3 \text{ (FCD)}$   
=  $\underline{222 \, \text{cm}^2 \, (3 \, \text{sf})}$ .

Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics