Dr Oliver Mathematics AQA Further Maths Level 2 June 2021 Paper 1 1 hour 30 minutes

The total number of marks available is 80 .
You must write down all the stages in your working.
You are not permitted to use a scientific or graphical calculator in this paper.

1. Work out the distance between the points $A(-3,7)$ and $B(5,1)$.
2.

$$
y=x\left(2 x^{4}-7 x^{3}\right) .
$$

Work out an expression for the rate of change of y with respect to x.
3. Here are four sketch graphs.

Circle the letter of the sketch graph that represents

$$
3 x+2 y=5 .
$$

4. The function f is given by

$$
\mathrm{f}(x)=3 x-5
$$

The range is

$$
\begin{equation*}
13<\mathrm{f}(x)<19 \tag{1}
\end{equation*}
$$

(a) Work out the domain of the function.

The function g is given by

$$
\mathrm{g}(x)=x^{2}-4
$$

with domain $-1<x<3$.
(b) Work out the range of the function.

The function h is given by

$$
\begin{equation*}
\mathrm{h}(x)=\frac{3+x}{2} . \tag{2}
\end{equation*}
$$

(c) Work out $\mathrm{h}^{-1}(x)$.
5. The nth term of a sequence is

$$
\frac{2 n+47}{n+1}
$$

A term of the sequence has a value of 5 .
(a) Work out the value of n.
(b) Write down the limiting value of the sequence as $n \rightarrow \infty$.
6. Here is a sketch of
for

$$
0^{\circ} \leqslant x \leqslant 360^{\circ}
$$

You are given that

$$
\sin 220^{\circ}=-k
$$

Work out the two values of x for $0^{\circ} \leqslant x \leqslant 360^{\circ}$ for which $y=k$.
7. Solve

$$
\begin{equation*}
2 x^{2}+4>(2 x-3)(x+1) . \tag{3}
\end{equation*}
$$

8. Simplify

$$
\begin{equation*}
\sqrt{3}(\sqrt{75}+\sqrt{48}) \tag{2}
\end{equation*}
$$

writing your answer as an integer.
9. Expand and simplify fully

$$
(2 x-5)(3 x-4)(x+2)
$$

10. The first four terms of a quadratic sequence are

$$
\begin{array}{llll}
0 & 1 & 0 & -3 . \tag{3}
\end{array}
$$

Work out an expression for the nth term.
11.

$$
\left(\begin{array}{ll}
2 & 1 \tag{4}\\
0 & 3
\end{array}\right)\left(\begin{array}{cc}
a & b \\
0 & 0.4
\end{array}\right)=k \mathbf{I},
$$

where k is a constant and \mathbf{I} is the identity matrix.
Work out the values of a and b.
12. A circle, centre $C(4,-2)$, passes through the origin and point $A(8,0)$ on the x-axis. The tangent at A is shown.

(a) Work out the equation of the circle.
(b) Work out the equation of the tangent to the circle at A.
13. Here is a sketch of

$$
y=k^{x}
$$

where $k>0$.
$A\left(2,3 \frac{1}{16}\right)$ is a point on the curve.

(a) Work out the value of k.
B is a point on the curve with x-coordinate -1 .
(b) Work out the y-coordinate of B.
14. Solve the simultaneous equations:

$$
\begin{align*}
4 a-b+3 c & =27 \tag{5}\\
3 a+2 b-c & =5 \\
2 a-5 c & =-7 .
\end{align*}
$$

Do not use trial and improvement.
You must show your working.
15. Work out the value of x where $0^{\circ} \leqslant x \leqslant 90^{\circ}$ for which

$$
\begin{equation*}
3 \tan ^{2} x=1 \tag{2}
\end{equation*}
$$

16.

$$
\begin{equation*}
f(x)=200 x^{3}+100 x^{2}-18 x-9 . \tag{2}
\end{equation*}
$$

(a) Use the factor theorem to show that $(2 x+1)$ is a factor of $\mathrm{f}(x)$.
(b) Hence solve $\mathrm{f}(x)=0$.
17. Here is the graph of

$$
\begin{equation*}
y=x^{2}-6 x+5 \tag{3}
\end{equation*}
$$

for values of x between 0 and 6 .

By drawing a suitable linear graph on the grid, work out approximate solutions to

$$
x^{2}-7 x+9=0
$$

18. Here is a triangle.

Use the cosine rule to work out the value of x.
19. $y=\mathrm{f}(x)$ is the graph of a cubic function.

- $y<0$ for $x<5$.
- $y \geqslant 0$ for $x \geqslant 5$.

The function is

- increasing for $x<-1$,
- decreasing for $-1<x<2$, and
- increasing for $x>2$.

Draw a possible sketch of $y=\mathrm{f}(x)$ for values of x from -2 to 6 .

20. Miriam's date of birth is $14 / 09 / 2006$.

She makes a 4-digit number code using digits from her date of birth.
The 4-digit number she makes must

- not start with 0 and
- have all different digits.

How many codes can she make?
21. $A B C$ is a triangle.

The perpendicular from A meets $B C$ at D. $B C=(6+2 \sqrt{7}) \mathrm{cm}$.

Area of triangle $A B C=(13+3 \sqrt{7}) \mathrm{cm}^{2}$.
Work out the length, in cm , of $A D$.
Give your answer in the form

$$
a+b \sqrt{c}
$$

where a, b, and c are integers.
22. Solve

$$
\begin{equation*}
8^{x}=\frac{2^{56}-4^{26}}{30} \tag{4}
\end{equation*}
$$

23. - F, H, K, and J are points on a circle.

- Chords $H J$ and $K F$ intersect at L.
- $E F G$ is a tangent to the circle.
- $F H$ and $J K$ are parallel.

Angle $F H J=2 x$.

(a) Give reasons why angle $F K J$ and angle $H J K$ are also equal to $2 x$.
(b) Work out the values of x and y.

You must show your working.
Do not use trial and improvement.

