Dr Oliver Mathematics GCSE Mathematics 2022 November Paper 1H: Non-Calculator 1 hour 30 minutes

The total number of marks available is 80 .
You must write down all the stages in your working.

1. Write 500 as a product of powers of its prime factors.

Solution

	500
2	250
	125
	125
	25
	5
	1

So

$$
500=2 \times 2 \times 5 \times 5 \times 5=\underline{\underline{2^{2} \times 5^{3}}} .
$$

2. (a) Work out

$$
1 \frac{3}{5}+2 \frac{1}{4}
$$

Give your answer as a mixed number.

Solution

$$
\begin{aligned}
1 \frac{3}{5}+2 \frac{1}{4} & =1+\frac{3}{5}+2+\frac{1}{4} \\
& =3+\frac{12}{20}+\frac{5}{20} \\
& =\underline{3 \frac{17}{20}} .
\end{aligned}
$$

(b) Show that

$$
2 \frac{2}{3} \div 6=\frac{4}{9} .
$$

Solution

$$
\begin{aligned}
2 \frac{2}{3} \div 6 & =\frac{8}{3} \div 6 \\
& =\frac{8}{3} \times \frac{1}{6} \\
& =\frac{4}{3} \times \frac{1}{3} \\
& =\frac{4}{9},
\end{aligned}
$$

as required.
3. Simplify

$$
\left(2^{-5} \times 2^{8}\right)^{2}
$$

Give your answer as a power of 2

Solution

$$
\begin{aligned}
\left(2^{-5} \times 2^{8}\right)^{2} & =\left(2^{3}\right)^{2} \\
& =\underline{\underline{2^{6}}} .
\end{aligned}
$$

4. Work out

$$
0.004 \times 0.32
$$

Solution

Well,

$$
4 \times 32=128
$$

and count up the spaces to the right of decimal points: $3+2=5$. Hence,

$$
0.004 \times 0.32=\underline{\underline{0.00128}}
$$

5. A car factory is going to make four different car models $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D}.

80 people are asked which of the four models they would be most likely to buy.

The table shows information about the results.

Car model	Number of people
A	23
B	15
C	30
D	12

The factory is going to make 40000 cars next year.
Work out how many model \mathbf{B} cars the factory should make next year.

Solution

They should make

$$
\begin{aligned}
\frac{15}{80} \times 40000 & =15 \times 500 \\
& =\underline{\underline{7500 \mathrm{cars}}}
\end{aligned}
$$

of model B.
6. Rizwan writes down three numbers a, b, and c :

$$
\begin{aligned}
& a: b=1: 3 \\
& b: c=6: 5 .
\end{aligned}
$$

(a) (i) Find

$$
\begin{equation*}
a: b: c \tag{2}
\end{equation*}
$$

Solution

Well,

$$
\begin{aligned}
& a: b=1: 3=2: 6 \\
& b: c=6: 5
\end{aligned}
$$

and

$$
a: b: c=\underline{\underline{2: 6: 5}} .
$$

(ii) Express a as a fraction of the total of the three numbers a, b, and c.

Solution

Well,

$$
2+6+5=13
$$

and so, as a fraction, a equals $\frac{2}{\underline{13}}$.

Emma writes down three numbers m, n, and p :

$$
\begin{aligned}
n & =2 m \\
p & =5 n .
\end{aligned}
$$

(b) Find

Solution

Well,

$$
p=5 n \Rightarrow n=\frac{1}{5} p
$$

and

$$
\begin{aligned}
\frac{n}{n}=\frac{1}{1} & \Rightarrow \frac{2 m}{\frac{1}{5} p}=\frac{1}{1} \\
& \Rightarrow \frac{m}{p}=\frac{\frac{1}{2}}{5} \\
& \Rightarrow \frac{m}{p}=\frac{1}{10} \\
& \Rightarrow m: p=\underline{\underline{1: 10}}
\end{aligned}
$$

7. A storage tank exerts a force of 10000 newtons on the ground.

$$
\text { pressure }=\frac{\text { force }}{\text { area }}
$$

The base of the tank in contact with the ground is a 4 m by 2 m rectangle.
Work out the pressure on the ground due to the tank.

Solution
Pressure $=\frac{\text { force }}{\text { area }}$ $=\frac{10000}{4 \times 2}$ $=\frac{10000}{8}$ $=\underline{\underline{1250 \text { newtons } / \mathrm{m}^{2}} .}$

8. Two numbers m and n are such that

- m is a multiple of 5 ,
- n is an even number, and
- the highest common factor (HCF) of m and n is 7 .

Write down a possible value for m and a possible value for n.

Solution

E.g., the number are $\underline{\underline{m=35}}$ and $\underline{\underline{n=14}}: 35=5 \times 7,28$ is a even number, and

$$
m=5 \times 7 \text { and } n=2 \times 7 .
$$

9. (a) Complete the table of values for

$$
\begin{equation*}
y=6 x-x^{3} \tag{2}
\end{equation*}
$$

x	-3	-2	-1	0	1	2	3
y	9					4	-9

Solution

x	-3	-2	-1	0	1	2	3
y	9	$\underline{\underline{-4}}$	$\underline{\underline{-5}}$	$\underline{\underline{0}}$	$\underline{\underline{5}}$	4	-9

(b) On the grid, draw the graph of

$$
y=6 x-x^{3}
$$

for values of x from -3 to 3 .

Solution

Or Oliver

10. Lina spins a biased 5 -sided spinner 40 times.

Here are her results.

Score	1	2	3	4	5
Frequency	6	8	9	7	10

Lina is now going to spin the spinner another two times.
(a) Work out an estimate for the probability that she gets a score of 5 both times.

Solution

$$
\begin{aligned}
\mathrm{P}(2,2) & =\frac{10}{40} \times \frac{10}{40} \\
& =\frac{1}{4} \times \frac{1}{4} \\
& =\frac{1}{16} .
\end{aligned}
$$

Derek is going to spin the spinner a large number of times.
(b) Work out an estimate for the percentage of times Derek can expect to get a score of 1 .

Solution

$$
\begin{aligned}
\text { Estimate } & =\frac{6}{40} \times 100 \% \\
& =\frac{3}{20} \times 100 \% \\
& =3 \times 5 \% \\
& =\underline{\underline{15 \%}} .
\end{aligned}
$$

11. Describe fully the single transformation that maps shape \mathbf{P} onto shape \mathbf{Q}.

Solution

12. Solve the simultaneous equations

$$
\begin{aligned}
& 5 x+2 y=11 \\
& 4 x+3 y=6 .
\end{aligned}
$$

Solution

Well,

$$
\begin{align*}
& 5 x+2 y=11 \tag{1}\\
& 4 x+3 y=6 \tag{2}
\end{align*}
$$

E.g., do $3 \times(1)$ and $2 \times(2)$:

$$
\begin{array}{r}
15 x+6 y=33 \\
8 x+6 y=12 \tag{4}
\end{array}
$$

Do (3) - (4):

$$
7 x=21 \Rightarrow x=3
$$

insert into (1):

$$
\begin{aligned}
& \Rightarrow 5(3)+2 y=11 \\
& \Rightarrow 15+2 y=11 \\
& \Rightarrow 2 y=-4 \\
& \Rightarrow y=-2 .
\end{aligned}
$$

13. p is inversely proportional to t.

Complete the table of values.

t	100	25	
p	1		5

Solution

Well,

$$
p \propto \frac{1}{t} \Rightarrow p t=k,
$$

for some constant k. Now,

$$
t=100, p=1 \Rightarrow p t=100
$$

and so

$$
p t=100
$$

Hence,

t	100	25	$\underline{\underline{20}}$	2
p	1	$\underline{4}$	5	$\underline{\underline{50}}$

14. The table shows information about the weights, in grams, of some potatoes.

Weight (w grams $)$	Number of potatoes
$50<w \leqslant 70$	20
$70<w \leqslant 80$	50
$80<w \leqslant 90$	60
$90<w \leqslant 110$	30

On the grid, draw a histogram for this information.

Solution

Well,

15. The diagram shows a sector of a circle of radius 18 cm .

The length of the arc is $4 \pi \mathrm{~cm}$.
Work out the value of x.

Solution

Now,

$$
\begin{aligned}
\frac{x}{360}=\frac{4 \pi}{2 \times \pi \times 18} & \Rightarrow \frac{x}{360}=\frac{4}{36} \\
& \Rightarrow \frac{x}{360}=\frac{1}{9} \\
& \Rightarrow x=\frac{1}{9} \times 360 \\
& \Rightarrow \underline{\underline{x=40}} .
\end{aligned}
$$

16. (a) Prove that

$$
\begin{equation*}
(2 m+1)^{2}-(2 n-1)^{2}=4(m+n)(m-n+1) \tag{3}
\end{equation*}
$$

Solution

Well,

\times	$2 m$	+1
$2 m$	$4 m^{2}$	$+2 m$
+1	$+2 m$	+1

and

\times	$2 n$	+1
$2 m$	$4 n^{2}$	$-2 n$
-1	$-2 n$	+1

and so

$$
\begin{aligned}
(2 m+1)^{2}-(2 n-1)^{2} & =\left(4 m^{2}+4 m+1\right)-\left(4 n^{2}-4 n+1\right) \\
& =4 m^{2}+4 m-4 n^{2}+4 n \\
& =4\left(m^{2}+m-n^{2}+n\right) \\
& =4\left[\left(m^{2}-m n+m\right)+\left(m n-n^{2}+n\right)\right] \\
& =4[m(m-n+1)+n(m-n+1)] \\
& =\underline{\underline{4(m+n)(m-n+1)}},
\end{aligned}
$$

as required.

Sophia says that the result in part (a) shows that the difference of the squares of any two odd numbers must be a multiple of 4 .
(b) Is Sophia correct?

You must give reasons for your answer.

Solution

Yes: the LHS are odd numbers and the RHS is $4 p$, where p is some integer.
17. Work out the value of

$$
\begin{equation*}
\left(\frac{8}{27}\right)^{\frac{4}{3}} \tag{2}
\end{equation*}
$$

Solution

$\left(\frac{8}{27}\right)^{\frac{4}{3}}$	$=\left[\left(\frac{8}{27}\right)^{\frac{1}{3}}\right]^{4}$
	$=\left(\frac{\sqrt[3]{8}}{\sqrt[3]{27}}\right)^{4}$
	$=\left(\frac{2}{3}\right)^{4}$
	$=\frac{2^{4}}{3^{4}}$
	$=\frac{16}{\underline{81}}$.

18. A and B are points on a circle, centre O.
$D B C$ is the tangent to the circle at B.
Angle $A O B=x^{\circ}$.

Show that

$$
\text { angle } A B C=\frac{1}{2} x^{\circ} \text {. }
$$

You must give a reason for each stage of your working.

Solution

Well, $\angle O B A=\angle O A B=\frac{1}{2}(180-x)$ (base angles).
Finally,

$$
\begin{aligned}
\angle A B C & =90-\frac{1}{2}(180-x) \quad(\angle O B C \text { is a right angle }) \\
& =90-90+\frac{1}{2} x \\
& =\underline{\underline{\frac{1}{2}} x^{\circ}} .
\end{aligned}
$$

19. Solve

$$
\begin{equation*}
\frac{1}{x}-\frac{1}{x+1}=4 \tag{5}
\end{equation*}
$$

Give your answer in the form $a \pm b \sqrt{2}$, where a and b are fractions.

Solution

Multiply by $x(x+1)$:

$$
\begin{aligned}
& \frac{1}{x}-\frac{1}{x+1}=4 \\
\Rightarrow & x(x+1) \times \frac{1}{x}-x(x+1) \times \frac{1}{x+1}=x(x+1) \times 4 \\
\Rightarrow & (x+1)-x=4 x(x+1) \\
\Rightarrow & 1=4 x^{2} x+4 x \\
\Rightarrow & 1+1=4 x^{2} x+4 x+1 \\
\Rightarrow & 2=(2 x+1)^{2} \\
\Rightarrow & \pm \sqrt{2}=2 x+1 \\
\Rightarrow & -1 \pm \sqrt{2}=2 x \\
\Rightarrow & x=-\frac{1}{2} \pm \frac{1}{2} \sqrt{2}
\end{aligned}
$$

hence, $\underline{\underline{a=-\frac{1}{2}}}$ and $\underline{\underline{b=\frac{1}{2}}}$.
20. Alfie has 11 cards.

He has

- 3 blue cards
- 7 green cards and
- 1 white card.

Alfie takes at random 2 of these cards.
Work out the probability that he takes cards of different colours.

Solution	
$\qquad$$\mathrm{P}($ different colours $)$ $=1-\mathrm{P}($ the same $)$ $=1-[\mathrm{P}(B B)+\mathrm{P}(G G)]$ $=1-\left(\frac{3}{11} \times \frac{2}{10}+\frac{7}{11} \times \frac{6}{10}\right)$ $=1-\left(\frac{6}{110}+\frac{42}{110}\right)$ $=1-\frac{48}{110}$ $=1-\frac{24}{55}$ $=\frac{31}{\underline{55}}$.	

21. The diagram shows a sketch of part of the curve with equation $y=\cos x^{\circ}$. P is a minimum point on the curve.

Write down the coordinates of P.

Solution

$\underline{\underline{P(180,-1)}}$.
22. Here is a triangle $A B C$.

Work out the value of $\sin A B C$.
Give your answer in the form $\frac{m}{n}$ where m and n are integers.
Solution

\[\)| $\frac{\sin A B C}{A C}=\frac{\sin B A C}{B C}$ | $\Rightarrow \frac{\sin A B C}{6.5}=\frac{\sin 30^{\circ}}{10.7}$ |
| ---: | :--- |
| | $\Rightarrow \frac{\sin A B C}{6.5}=\frac{\frac{1}{2}}{10.7}$ |
| | $\Rightarrow \sin A B C=\frac{\frac{1}{2} \times 6.5}{10.7}$ |
| | $\Rightarrow \sin A B C=\frac{3.25}{10.7}$ |
| | $\Rightarrow \sin A B C=\frac{325}{1070}$ |
| | $\Rightarrow \underline{\sin A B C=\frac{65}{214}} .$ |
| | |

\]

23. Here are the first five terms of a geometric sequence.

$$
\begin{array}{lllll}
\sqrt{5} & 10 & 20 \sqrt{5} & 200 & 400 \sqrt{5}
\end{array}
$$

(a) Work out the next term of the sequence.

Solution

Well,

$$
\begin{aligned}
r & =\frac{10}{\sqrt{5}} \\
& =2 \sqrt{5}
\end{aligned}
$$

and

$$
\begin{aligned}
6 \text { th term } & =400 \sqrt{5} \times 2 \sqrt{5} \\
& =800 \times 5 \\
& =\underline{\underline{4000}} .
\end{aligned}
$$

The 4th term of a different geometric sequence is $\frac{5 \sqrt{2}}{4}$.
The 6 th term of this sequence is $\frac{5 \sqrt{2}}{8}$.
Given that the terms of this sequence are all positive,
(b) work out the first term of this sequence.

You must show all your working.

Solution

Now,

$$
a r^{3}=\frac{5 \sqrt{2}}{4} \text { and } a r^{5}=\frac{5 \sqrt{2}}{8}
$$

which leads to

$$
\begin{aligned}
r^{2}=\frac{\frac{5 \sqrt{2}}{8}}{\frac{5 \sqrt{2}}{4}} & \Rightarrow r^{2}=\frac{1}{2} \\
& \Rightarrow r=\frac{\sqrt{2}}{2} \text { (because all terms are positive) } \\
& \Rightarrow r^{3}=\frac{2 \sqrt{2}}{8}
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } \\
& \qquad \begin{aligned}
a & =\frac{\frac{5 \sqrt{2}}{4}}{\frac{2 \sqrt{2}}{8}} \\
& =\frac{5 \sqrt{2}}{4} \times \frac{8}{2 \sqrt{2}} \\
& =\underline{\underline{5}} .
\end{aligned}
\end{aligned}
$$

24. Here is a solid sphere and a solid cone.

Volume of sphere $=\frac{4}{3} \pi r^{3}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$

All measurements are in cm.
The volume of the sphere is equal to the volume of the cone.
(a) Find $r: h$.

Give your answer in its simplest form.

Solution

Well,

$$
\begin{aligned}
\frac{4}{3} \pi r^{3}=\frac{1}{3} \pi r^{2} h & \Rightarrow 4 r=h \\
& \Rightarrow r: h=1: 4 .
\end{aligned}
$$

Here is a different solid sphere and a different solid cone.

Surface area of sphere $=4 \pi r^{2}$

Curved area of cone $=\pi r l$

All measurements are in cm.
The surface area of the sphere is equal to the total surface area of the cone.
(b) Find $r: h$.

Give your answer in the form $1: \sqrt{n}$, where n is an integer.

Solution

Well,

$$
\begin{aligned}
4 \pi r^{2}=\pi r l+\pi r^{2} & \Rightarrow 3 r=l \\
& \Rightarrow(3 r)^{2}=l^{2} \\
& \Rightarrow 9 r^{2}=r^{2}+h^{2} \\
& \Rightarrow 8 r^{2}=h^{2} \\
& \Rightarrow 2 \sqrt{2} r=h \\
& \Rightarrow \underline{\underline{r: h=1: 2 \sqrt{2}}} .
\end{aligned}
$$

