

Dr Oliver Mathematics

Mathematics

Vectors

Past Examination Questions

This booklet consists of 27 questions across a variety of examination topics. The total number of marks available is 315.

1. The line l_1 has vector equation

$$\mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$$

and line l_2 has vector equation

$$\mathbf{r} = \begin{pmatrix} 0 \\ 4 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix},$$

where λ and μ are parameters.

The lines l_1 and l_2 intersect at the point B and the acute angle between l_1 and l_2 is θ .

(a) Find the coordinates of B . (4)
 (b) Find the value of $\cos \theta$, giving your answer as a simplified fraction. (4)

- The point A , which lies on l_1 , has position vector $\mathbf{a} = 3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$.
- The point C , which lies on l_2 , has position vector $\mathbf{c} = 5\mathbf{i} - \mathbf{j} - 2\mathbf{k}$.
- The point D is such that $ABCD$ is a parallelogram.

(c) Show that (3)

$$|\overrightarrow{AB}| = |\overrightarrow{BC}|.$$

(d) Find the position vector of the point D . (2)

2. The line l_1 has vector equation

$$\mathbf{r} = 8\mathbf{i} + 12\mathbf{j} + 14\mathbf{k} + \lambda(\mathbf{i} + \mathbf{j} - \mathbf{k}),$$

where λ is a parameter.

- The point A has coordinates $(4, 8, a)$, where a is a constant.
- The point B has coordinates $(b, 13, 13)$, where b is a constant.

- Points A and B lie on the line l_1 .

(a) Find the values of a and b . (3)

Given that the point O is the origin, and that the point P lies on l_1 such that OP is perpendicular to l_1 ,

(b) find the coordinates of P . (5)

(c) Hence find the distance OP , giving your answer as a simplified surd. (2)

3. The point A , with coordinates $(0, a, b)$ lies on the line l_1 , which has equation

$$\mathbf{r} = 6\mathbf{i} + 19\mathbf{j} - \mathbf{k} + \lambda(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}).$$

(a) Find the values of a and b . (3)

The point P lies on l_1 and is such that OP is perpendicular to l_1 , where O is the origin.

(b) Find the position vector of point P . (6)

Given that B has coordinates $(5, 15, 1)$,

(c) show that the points A , P , and B are collinear and find the ratio $AP : PB$. (4)

4. The point A has position vector

$$\mathbf{a} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$$

and the point B has position vector

$$\mathbf{b} = \mathbf{i} + \mathbf{j} - 4\mathbf{k},$$

relative to an origin O .

(a) Find the position vector of the point C , with position vector \mathbf{c} , given by (1)

$$\mathbf{c} = \mathbf{a} + \mathbf{b}.$$

(b) Show that $OACB$ is a rectangle, and find its exact area. (6)

The diagonals of the rectangle, AB and OC , meet at the point D .

(c) Write down the position vector of the point D . (1)

(d) Find the size of the angle ADC . (6)

5. The line l_1 has equation

$$\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

and the line l_2 has equation

$$\mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}.$$

(a) Show that l_1 and l_2 do not meet. (4)

The point A is on l_1 where $\lambda = 1$ and the point B is on l_2 where $\mu = 2$.

(b) Find the cosine of the acute angle between AB and l_1 . (6)

6. The points A and B have position vectors

$$2\mathbf{i} + 6\mathbf{j} - \mathbf{k} \text{ and } 3\mathbf{i} + 4\mathbf{j} + \mathbf{k},$$

respectively.

The line l_1 passes through the points A and B .

(a) Find the vector \overrightarrow{AB} . (2)

(b) Find a vector equation for the line l_1 . (2)

A second line l_2 passes through the origin and is parallel to the vector $\mathbf{i} + \mathbf{k}$.

The line l_1 meets the line l_2 at the point C .

(c) Find the acute angle between l_1 and l_2 . (3)

(d) Find the position vector of the point C . (4)

7. With respect to a fixed origin O , the lines l_1 and l_2 are given by the equations:

$$l_1 : \mathbf{r} = (-9\mathbf{i} + 10\mathbf{k}) + \lambda(2\mathbf{i} + \mathbf{j} - \mathbf{k}),$$

$$l_2 : \mathbf{r} = (3\mathbf{i} + \mathbf{j} + 17\mathbf{k}) + \mu(3\mathbf{i} - \mathbf{j} + 5\mathbf{k}),$$

where λ and μ are scalar parameters.

(a) Show that l_1 and l_2 meet and find the position vector of their point of intersection. (6)

(b) Show that l_1 and l_2 are perpendicular to each other. (2)

The point A has position vector

$$5\mathbf{i} + 7\mathbf{j} + 3\mathbf{k}.$$

(c) Show that A lies on l_1 . (1)

The point B is the image of A after reflection in the line l_2 .

(d) Find the position vector of B . (3)

8. With respect to a fixed origin O , the lines l_1 and l_2 are given by the equations:

$$l_1 : \begin{pmatrix} 11 \\ 2 \\ 17 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 1 \\ -4 \end{pmatrix},$$

$$l_2 : \begin{pmatrix} -5 \\ 11 \\ p \end{pmatrix} + \mu \begin{pmatrix} q \\ 2 \\ 2 \end{pmatrix},$$

where λ and μ are parameters and p and q are constants.

Given that l_1 and l_2 are perpendicular,

(a) show that $q = -3$. (2)

Given further that l_1 and l_2 intersect, find

(b) the value of p , (6)

(c) the coordinates of the point of intersection. (2)

The point A lies on l_1 and has position vector

$$\begin{pmatrix} 9 \\ 3 \\ 13 \end{pmatrix}.$$

The point C lies on l_2 .

Given that a circle, with centre C , cuts the line l_1 at the points A and B ,

(d) find the position vector of B . (3)

9. Relative to a fixed origin O , the point A has position vector

$$8\mathbf{i} + 13\mathbf{j} - 2\mathbf{k},$$

the point B has position vector

$$10\mathbf{i} + 14\mathbf{j} - 4\mathbf{k},$$

and the point C has position vector

$$9\mathbf{i} + 9\mathbf{j} + 6\mathbf{k}.$$

The line l passes through the points A and B .

(a) Find a vector equation for the line l . (3)

(b) Find $|\overrightarrow{CB}|$. (2)

(c) Find the size of the acute angle between the line segment CB and the line l , giving your answer in degrees to 1 decimal place. (3)

(d) Find the shortest distance from the point C to the line l . (3)

The point X lies on l .

Given that the vector \overrightarrow{CX} is perpendicular to l ,

(e) find the area of the triangle CXB , giving your answer to 3 significant figures. (3)

10. The line l_1 has vector equation

$$\mathbf{r} = \begin{pmatrix} -6 \\ 4 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix}$$

and the line l_2 has vector equation

$$\mathbf{r} = \begin{pmatrix} -6 \\ 4 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix},$$

where λ and μ are parameters.

The lines l_1 and l_2 intersect at the point A and the acute angle between l_1 and l_2 is θ .

(a) Write down the coordinates of A . (1)

(b) Find the value of $\cos \theta$. (3)

The point X lies on l_1 where $\lambda = 4$.

(c) Find the coordinates of X . (1)

(d) Find the vector \overrightarrow{AX} . (2)

(e) Hence, or otherwise, show that (2)

$$|\overrightarrow{AX}| = 4\sqrt{26}.$$

The point Y lies on l_2 .

Given that the vector YX is perpendicular to l_1 ,

(f) find the length of AY , giving your answer to 3 significant figures. (3)

11. The line l_1 has equation

$$\mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix},$$

where λ is a scalar parameter.

The line l_2 has equation

$$\mathbf{r} = \begin{pmatrix} 0 \\ 9 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix},$$

where μ is a scalar parameter.

Given that l_1 and l_2 meet at the point C , find

(a) the coordinates of C .

(3)

The point A is the point on l_1 where $\lambda = 0$ and the point B is the point on l_2 where $\mu = -1$.

(b) Find the size of the angle ACB .

(4)

Give your answer in degrees to 2 decimal places.

(c) Hence, or otherwise, find the area of the triangle ABC .

(5)

12. Relative to a fixed origin O , the point A has position vector

$$\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$$

and the point B has position vector

$$-2\mathbf{i} + 2\mathbf{j} - \mathbf{k}.$$

The points A and B lie on a straight line l .

(a) Find \overrightarrow{AB} .

(2)

(b) Find a vector equation of l .

(2)

The point C has position vector

$$2\mathbf{i} + p\mathbf{j} - 4\mathbf{k}$$

with respect to O , where p is a constant.

Given that AC is perpendicular to l , find

(c) the value of p ,

(4)

(d) the distance AC .

(2)

13. With respect to a fixed origin O , the lines l_1 and l_2 are given by the equations:

$$l_1 : \mathbf{r} = \begin{pmatrix} 6 \\ -3 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix},$$

$$l_2 : \mathbf{r} = \begin{pmatrix} -5 \\ 15 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix},$$

where λ and μ are scalar parameters.

(a) Show that l_1 and l_2 meet and find the position vector of their point of intersection A . (6)

(b) Find, to the nearest 0.1° , the acute angle between l_1 and l_2 . (3)

The point B has position vector

$$\begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix}.$$

(c) Show that B lies on l_1 . (1)

(d) Find the shortest distance from B to the line l_2 , giving your answer to 3 significant figures. (4)

14. Relative to a fixed origin O , the point A has position vector

$$(2\mathbf{i} - \mathbf{j} + 5\mathbf{k}),$$

the point B has position vector

$$(5\mathbf{i} + 2\mathbf{j} + 10\mathbf{k}),$$

and the point D has position vector

$$(-\mathbf{i} + \mathbf{j} + 4\mathbf{k}).$$

The line l passes through the points A and B .

(a) Find the vector \overrightarrow{AB} . (2)

(b) Find a vector equation for the line l . (2)

(c) Show that the size of the angle BAD is 109° , to the nearest degree. (4)

The points A , B , and D , together with a point C , are the vertices of the parallelogram $ABCD$, where

$$\overrightarrow{AB} = \overrightarrow{DC}.$$

(d) Find the position vector of C . (2)

(e) Find the area of the parallelogram $ABCD$, giving your answer to 3 significant figures. (3)

(f) Find the shortest distance from the point D to the line l , giving your answer to 3 significant figures. (2)

15. Relative to a fixed origin O , the point A has position vector

$$(10\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$$

and the point B has position vector

$$(8\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}).$$

The line l passes through the points A and B .

(a) Find the vector \overrightarrow{AB} . (2)

(b) Find a vector equation for the line l . (2)

The point C has position vector

$$(3\mathbf{i} + 12\mathbf{j} + 3\mathbf{k}).$$

The point P lies on l .

Given that the vector \overrightarrow{CP} is perpendicular to l ,

(c) find the position vector of the point P . (6)

16. With respect to a fixed origin O , the lines l_1 and l_2 are given by the equations

$$\begin{aligned} l_1 : \quad \mathbf{r} &= (9\mathbf{i} + 13\mathbf{j} - 3\mathbf{k}) + \lambda(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}) \\ l_2 : \quad \mathbf{r} &= (2\mathbf{i} - \mathbf{j} + \mathbf{k}) + \mu(2\mathbf{i} + \mathbf{j} + \mathbf{k}), \end{aligned}$$

where λ and μ are scalar parameters.

(a) Given that l_1 and l_2 meet, find the position vector of their point of intersection. (5)

(b) Find the acute angle between l_1 and l_2 , giving your answer in degrees to 1 decimal place. (3)

Given that the point A has position vector

$$(4\mathbf{i} + 16\mathbf{j} - 3\mathbf{k})$$

and that the point P lies on l_1 such that AP is perpendicular to l_1 ,

(c) find the exact coordinates of P . (6)

17. With respect to a fixed origin O , the line l has equation

$$\mathbf{r} = \begin{pmatrix} 13 \\ 8 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix},$$

where λ is a scalar parameter.

The point A lies on l and has coordinates $(3, -2, 6)$.

The point P has position vector

$$(-p\mathbf{i} + 2p\mathbf{k}),$$

relative to O , where p is a constant.

Given that vector \overrightarrow{PA} is perpendicular to l ,

(a) find the value of p . (4)

Given also that B is a point on l such that $\angle BPA = 45^\circ$,

(b) find the coordinates of the two possible positions of B . (5)

18. Relative to a fixed origin O , the point A has position vector

$$21\mathbf{i} - 17\mathbf{j} + 6\mathbf{k}$$

and the point B has position vector

$$25\mathbf{i} - 14\mathbf{j} + 18\mathbf{k}.$$

The line l has equation

$$\mathbf{r} = \begin{pmatrix} a \\ b \\ 10 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix},$$

where a , b , and c are constants and λ is a scalar parameter.

Given that the point A lies on the line l ,

(a) find the value of a . (3)

Given also that the vector \overrightarrow{AB} is perpendicular to l ,

(b) find the value of b and c , (5)

(c) find the distance AB . (2)

The image of the point B after reflection in the line l is the point B' .

(d) Find the position vector of the point B' . (2)

19. Relative to a fixed origin O , the point A has position vector

$$\begin{pmatrix} -2 \\ 4 \\ 7 \end{pmatrix}$$

and the point B has position vector

$$\begin{pmatrix} -1 \\ 3 \\ 8 \end{pmatrix}.$$

The line l_1 passes through the points A and B .

(a) Find the vector \overrightarrow{AB} . (2)

(b) Hence find a vector equation for the line l_1 . (1)

The point P has position vector

$$\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}.$$

Given that angle PBA is θ ,

(c) show that $\cos \theta = \frac{1}{3}$. (3)

The line l_2 passes through the point P and is parallel to the line l_1 .

(d) Find a vector equation for the line l_2 . (2)

The points C and D both lie on the line l_2 .

Given that

$$AB = PC = DP$$

and the x -coordinate of C is positive,

(e) find the coordinates of C and the coordinates of D . (3)

(f) find the exact area of the trapezium $ABCD$, giving your answer as a simplified surd. (4)

20. With respect to a fixed origin, the point A with position vector

$$\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$$

lies on the line l_1 with equation

$$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix},$$

for some scalar λ , and the point B with position vector

$$4\mathbf{i} + p\mathbf{j} + 3\mathbf{k},$$

where p is a constant, lies on the line l_2 with equation

$$\mathbf{r} = \begin{pmatrix} 7 \\ 0 \\ 7 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ -5 \\ 4 \end{pmatrix},$$

for some scalar μ .

- (a) Find the value of the constant p . (1)
- (b) Show that l_1 and l_2 intersect and find the position vector of their point of intersection, C . (4)
- (c) Find the size of the angle ACB , giving your answer in degrees to 3 significant figures. (3)
- (d) Find the area of the triangle ABC , giving your answer to 3 significant figures. (2)

21. With respect to a fixed origin O , the lines l_1 and l_2 are given by the equations:

$$l_1 : \mathbf{r} = \begin{pmatrix} 5 \\ -3 \\ p \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ -13 \end{pmatrix},$$

$$l_2 : \mathbf{r} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix},$$

where λ and μ are scalar parameters and p is a constant.

The lines l_1 and l_2 intersect at the point A .

- (a) Find the coordinates of A . (2)
- (b) Find the value of the constant p . (3)
- (c) Find the acute angle between l_1 and l_2 , giving your answer in degrees to 2 decimal places. (3)

The point B lies on l_2 where $\mu = 1$.

- (d) Find the shortest distance from the point B to the line l_1 , giving your answer to 3 significant figures. (3)

22. With respect to a fixed origin O , the line l_1 is given by the equation

$$\mathbf{r} = \begin{pmatrix} 8 \\ 1 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix},$$

where μ is scalar parameter.

The point A lies on l_1 where $\mu = 1$.

(a) Find the coordinates of A .

(1)

The point P has position vector

$$\begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}.$$

The line l_2 passes through the point P and is parallel to the line l_1 .

(b) Write down a vector equation for the line l_2 .

(2)

(c) Find the exact value of the distance AP .

(2)

Give your answer in the form $k\sqrt{2}$, where k is a constant to be determined.

The acute angle between AP and l_2 is θ .

(d) Find the value of $\cos \theta$.

(3)

A point E lies on the line l_2 .

Given that $AP = PE$,

(e) find the area of triangle APE ,

(3)

(f) find the coordinates of the two possible positions of E .

(5)

23. With respect to a fixed origin O , the lines l_1 and l_2 are given by the equations

$$l_1 : \mathbf{r} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix},$$
$$l_2 : \mathbf{r} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix},$$

where λ and μ are scalar parameters.

The lines l_1 and l_2 intersect at the point X .

(a) Find the coordinates of the point X .

(3)

(b) Find the size of the acute angle between l_1 and l_2 , giving your answer in degrees to 2 decimal places.

(3)

The point A lies on l_1 and has position vector

$$\begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix}.$$

(c) Find the distance AX , giving your answer as a surd in its simplest form. (2)

The point Y lies on l_2 .

Given that the vector \vec{YA} is perpendicular to the line l_1 ,

(d) find the distance YA , giving your answer to one decimal place. (2)

The point B lies on l_1 where

$$|\vec{AX}| = 2|\vec{AB}|.$$

(e) Find the two possible position vectors of B . (3)

24. The point A with coordinates $(-3, 7, 2)$ lies on a line l_1 .

The point B also lies on the line l_1 .

Given that

$$\vec{AB} = \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix},$$

(a) find the coordinates of point B . (2)

The point P has coordinates $(9, 1, 8)$.

(b) Find the cosine of the angle PAB , giving your answer as a simplified surd. (3)

(c) Find the exact area of triangle PAB , giving your answer in its simplest form. (3)

The line l_2 passes through the point P and is parallel to the line l_1 .

(d) Find a vector equation for the line l_2 . (2)

The point Q lies on the line l_2 .

Given that the line segment AP is perpendicular to the line segment BQ ,

(e) find the coordinates of the point Q . (5)

25. Figure 1 shows a sketch of triangle OAB .

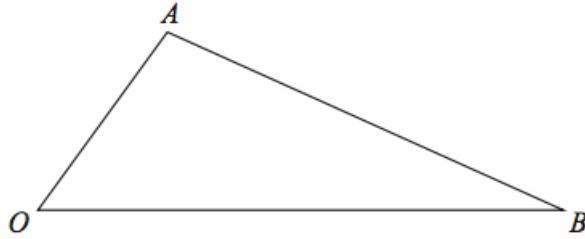


Figure 1: triangle OAB

The point C is such that $\overrightarrow{OC} = 2\overrightarrow{OA}$.

The point M is the midpoint of AB .

The straight line through C and M cuts OB at the point N .

Given $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(a) Find \overrightarrow{CM} in terms of \mathbf{a} and \mathbf{b} . (2)

(b) Show that (2)

$$\overrightarrow{ON} = (2 - \frac{3}{2}\lambda)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b},$$

where λ is a scalar constant.

(c) Hence prove that $ON : NB = 2 : 1$. (2)

26. Figure 2 shows a sketch of triangle ABC .

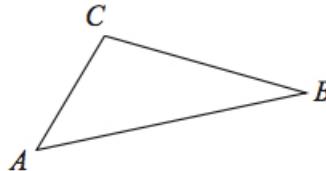


Figure 2: a sketch of triangle ABC

Given that

• $\overrightarrow{AB} = -3\mathbf{i} - 4\mathbf{j} - 5\mathbf{k}$ and

• $\overrightarrow{BC} = \mathbf{i} + \mathbf{j} + 4\mathbf{k}$,

(a) find \overrightarrow{AC} , (2)

(b) show that (3)

$$\cos A = \frac{9}{10}.$$

27. Figure 3 shows a sketch of a parallelogram $PQRS$.

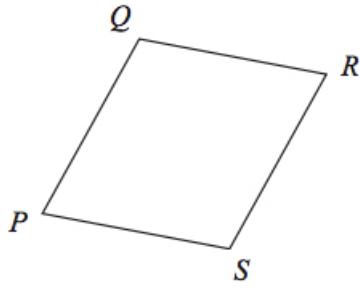


Figure 3: a parallelogram $PQRS$

Given that

- $\overrightarrow{PQ} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ and
- $\overrightarrow{QR} = 5\mathbf{i} - 2\mathbf{k}$,

(a) show that parallelogram $PQRS$ is a rhombus. (2)

(b) Find the exact area of the rhombus $PQRS$. (4)