Dr Oliver Mathematics

Mathematics: Higher

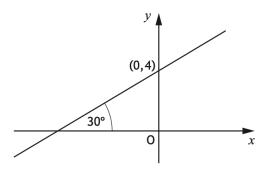
2024 Paper 1: Non-Calculator

1 hour 15 minutes

The total number of marks available is 55.

You must write down all the stages in your working.

1. A line passes through the point (0,4) and makes an angle of 30° with the positive direction of the x-axis, as shown in the diagram.



Determine the equation of the line.

Solution

Well,

$$m = \tan 30^{\circ}$$
$$= \frac{\sqrt{3}}{3}$$

and the equation of the line is

$$y - 4 = \frac{\sqrt{3}}{3}(x - 0) \Rightarrow \underline{y = \frac{\sqrt{3}}{3}x + 4}.$$

2. A sequence is defined by the recurrence relation with

$$u_{n+1} = \frac{1}{5}u_n + 12$$
 with $u_1 = 20$.

(1)

(a) Calculate the value of u_2 .

Solution

Now,

$$u_2 = \frac{1}{5}u_1 + 12$$

$$= \frac{1}{5}(20) + 12$$

$$= 4 + 12$$

$$= \underline{16}.$$

(b) (i) Explain why this sequence approaches a limit as $n \to \infty$.

(1)

Solution

 $\left|\frac{1}{5}\right| < 1$ so this means this sequence approaches a limit as $n \to \infty$.

(ii) Calculate this limit.

(2)

(2)

Solution

Let the limit be u. Then

$$u = \frac{1}{5}u + 12 \Rightarrow \frac{4}{5}u = 12$$
$$\Rightarrow \underline{u = 15}.$$

3. Given that

 $y = (5x^2 + 3)^7,$

find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

Solution

$$\frac{dy}{dx} = 7(5x^2 + 3)^6 \times 10x$$
$$= \underline{70x(5x^2 + 3)^6}.$$

4. P and Q have coordinates (-6,1,2) and (-1,11,-8) respectively. (2)

Find the coordinates of the point R which divides PQ in the ratio 2:3.

Dr Oliver

Solution

Now,

$$\overrightarrow{OR} = \overrightarrow{OP} + \overrightarrow{PR}$$

$$= \overrightarrow{OP} + \frac{2}{5}\overrightarrow{PQ}$$

$$= \begin{pmatrix} -6\\1\\2 \end{pmatrix} + \frac{2}{5}\begin{pmatrix} -1 - (-6)\\11 - 1\\-8 - 2 \end{pmatrix}$$

$$= \begin{pmatrix} -6\\1\\2 \end{pmatrix} + \frac{2}{5}\begin{pmatrix} 5\\10\\-10 \end{pmatrix}$$

$$= \begin{pmatrix} -6\\1\\2 \end{pmatrix} + \begin{pmatrix} 2\\4\\-4 \end{pmatrix}$$

$$= \begin{pmatrix} -4\\5\\-2 \end{pmatrix};$$

hence, the coordinates of the point R are (-4, 5, -2).

5. A function, h, is defined by where

$$h(x) = 2x^3 - 7$$
, where $x \in \mathbb{R}$.

(3)

Find the inverse function, $h^{-1}(x)$.

Solution

Well,

$$y = 2x^{3} - 7 \Rightarrow y + 7 = 2x^{3}$$

$$\Rightarrow \frac{y + 7}{2} = x^{3}$$

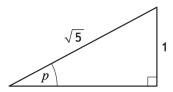
$$\Rightarrow \sqrt[3]{\frac{y + 7}{2}} = x;$$

hence,

$$h^{-1}(x) = \sqrt[3]{\frac{x+7}{2}}, x \in \mathbb{R}.$$

6. The right-angled triangle in the diagram is such that and

$$\sin p = \frac{1}{\sqrt{5}} \text{ and } 0$$



- (a) Determine the value of:
 - (i) $\sin 2p$,

(3)

Solution

Well,

$$opp^{2} + adj^{2} = hyp^{2} \Rightarrow 1 + adj^{2} = (\sqrt{5})^{2}$$
$$\Rightarrow 1 + adj^{2} = 5$$
$$\Rightarrow adj^{2} = 4$$
$$\Rightarrow adj = 2,$$

so $\cos p = \frac{2}{\sqrt{5}}$.

Finally,

$$\sin 2p = 2\sin p \cos p$$
$$= 2\left(\frac{1}{\sqrt{5}}\right)\left(\frac{2}{\sqrt{5}}\right)$$
$$= \frac{4}{5}.$$

(1)

(ii) $\cos 2p$.

$$\cos 2p = 1 - 2\sin^2 p$$

$$= 1 - 2(\frac{1}{\sqrt{5}})^2$$

$$= 1 - 2(\frac{1}{5})$$

$$= \frac{3}{5}.$$

(b) Hence determine the value of $\sin 4p$.

(1)

Solution

$$\sin 4p = 2\sin 2p\cos 2p$$
$$= 2\left(\frac{4}{5}\right)\left(\frac{3}{5}\right)$$
$$= \frac{24}{25}.$$

7. The line

$$y = 2x \tag{4}$$

is a tangent to the circle with equation

$$x^2 + y^2 - 14x - 8y + 45 = 0.$$

Determine the coordinates of the point of contact.

Solution

$$x^{2} + y^{2} - 14x - 8y + 45 = 0 \Rightarrow x^{2} + (2x)^{2} - 14x - 8(2x) + 45 = 0$$
$$\Rightarrow x^{2} + 4x^{2} - 14x - 16x + 45 = 0$$
$$\Rightarrow 5x^{2} - 30x + 45 = 0$$
$$\Rightarrow 5(x^{2} - 6x + 9) = 0$$

add to:
$$-6$$
 multiply to: $+9$ -3 (repeated)

$$\Rightarrow 5(x-3)^2 = 0$$
$$\Rightarrow x = 3$$

$$\Rightarrow y = 6;$$

the coordinates of the point of contact is (3,6).

8. The equation

$$x^{2} + (m-4)x + (2m-3) = 0$$
(4)

has no real roots.

Determine the range of values for m.

Justify your answer.

Solution

Well,

$$b^2 - 4ac < 0 \Rightarrow (m-4)^2 - 4(1)(2m-3) < 0$$

$$\Rightarrow m^2 - 8m + 16 - 8m + 12 < 0$$
$$\Rightarrow m^2 - 16m + 28 < 0$$

add to:
$$-16$$
 multiply to: $+28$ $\}$ -14 , -2

$$\Rightarrow (m-2)(m-14) < 0.$$

We need a 'table of signs':

	m < 2	m = 2	2 < m < 14	m = 14	m > 14
m-2	-	0	+	+	+
m - 14	_	_	_	0	+
$\frac{(m-2)(m-14)}{}$	1+	0	_	0	+

Hence,

$$2 < m < 14$$
.

9. Express

 $\log_a 5 + \log_a 80 - 2\log_a 10$

(3)

in the form

$$\log_a k$$
,

where k is a positive integer.

Solution

$$\begin{split} \log_a 5 + \log_a 80 - 2\log_a 10 &= \log_a (5 \times 80) - \log_a 10^2 \\ &= \log_a 400 - \log_a 100 \\ &= \log_a \left(\frac{400}{100}\right) \\ &= \underline{\log_a 4}. \end{split}$$

10. (a) Show that (x-1) is a factor of

$$2x^4 + 3x^3 - 4x^2 - 3x + 2$$
.

(2)

(4)

Solution

We use synthetic division:

Hence, the remainder is 0 and (x-1) is a <u>factor</u>:

$$2x^4 + 3x^3 - 4x^2 - 3x + 2 = (x - 1)(2x^3 + 5x^2 + x - 2).$$

(b) Hence, or otherwise, factorise

$$2x^4 + 3x^3 - 4x^2 - 3x + 2$$

fully.

Solution

Let

$$f(x) = 2x^3 + 5x^2 + x - 2.$$

Then

$$f(-1) = -2 + 5 - 1 - 2 = 0,$$

and (x + 1) is a factor:

So,

$$f(x) = (x+1)(2x^2 + 3x - 2).$$

Now,

add to:
$$+3$$
 multiply to: $(+2) \times (-2) = -4$ $\left. -1, +4 \right.$

Next, e.g.,

$$2x^{2} + 3x - 2 = 2x^{2} + 4x - x - 2$$
$$= 2x(x+2) - 1(x+2)$$
$$= (2x-1)(x+2).$$

Finally

$$2x^4 + 3x^3 - 4x^2 - 3x + 2 = \underbrace{(x-1)(x+1)(2x-1)(x+2)}_{}.$$

11. (a) Express

$$\cos x^{\circ} + \sqrt{3}\sin x^{\circ}$$

(4)

in the form

$$k\cos(x-\alpha)^{\circ}$$
,

where k > 0 and $0 < \alpha < 360$.

Solution

Well,

$$k\cos(x-\alpha)^{\circ} = k[\cos x^{\circ}\cos\alpha^{\circ} + \sin x^{\circ}\sin\alpha^{\circ}]$$
$$= k\cos x^{\circ}\cos\alpha^{\circ} + k\sin x^{\circ}\sin\alpha^{\circ}$$

Dr Oliver

and so

 $k\cos\alpha^{\circ} = 1 \text{ and } k\sin\alpha^{\circ} = \sqrt{3}.$

Now,

$$k = \sqrt{k^2}$$

$$= \sqrt{k^2(\cos^2 \alpha^\circ + \sin^2 \alpha^\circ)}$$

$$= \sqrt{k^2 \cos^2 \alpha^\circ + k^2 \sin^2 \alpha^\circ}$$

$$= \sqrt{(k \cos \alpha^\circ)^2 + (k \sin \alpha^\circ)^2}$$

$$= \sqrt{1^2 + (\sqrt{3})^2}$$

$$= \sqrt{1 + 3}$$

$$= \sqrt{4}$$

$$= 2$$

and

$$\tan \alpha^{\circ} = \frac{k \sin \alpha^{\circ}}{k \cos \alpha^{\circ}} \Rightarrow \tan \alpha^{\circ} = \frac{\sqrt{3}}{1}$$
$$\Rightarrow \alpha = 60.$$

Hence,

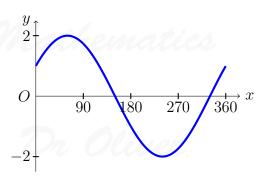
$$\cos x^{\circ} + \sqrt{3}\sin x^{\circ} = \underbrace{2\cos(x - 60)^{\circ}}_{\text{--}}.$$

(b) Hence, or otherwise, sketch the graph with equation

$$y = \cos x^{\circ} + \sqrt{3}\sin x^{\circ}, \ 0 \leqslant x \leqslant 360.$$

(3)

Solution



12. The function f is given by

(4)

When x = a, the rate of change of f with respect to x is 1.

Determine the value of a.

Solution

$$f(x) = 12\sqrt[3]{x} \Rightarrow f(x) = 12x^{\frac{1}{3}}$$
$$\Rightarrow f'(x) = 4x^{-\frac{2}{3}}$$

and

$$x = a, f'(a) = 1 \Rightarrow 4a^{-\frac{2}{3}} = 1$$

$$\Rightarrow a^{-\frac{2}{3}} = \frac{1}{4}$$

$$\Rightarrow a^{\frac{2}{3}} = 4$$

$$\Rightarrow \sqrt[3]{a^2} = 4$$

$$\Rightarrow a^2 = 64$$

$$\Rightarrow \underline{a} = \underline{8}.$$

- 13. P and Q are the points (4,10) and (6,2) respectively.
 - (a) Find the equation of the perpendicular bisector of PQ.

Solution

The midpoint is

$$\left(\frac{4+6}{2}, \frac{10+2}{2}\right) = (5,6).$$

Now,

$$m_{PQ} = \frac{2 - 10}{6 - 4}$$
$$= \frac{-8}{2}$$
$$= -4$$

and

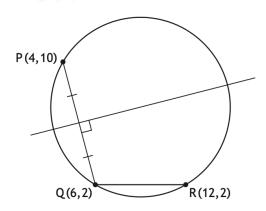
$$m_{\text{normal}} = \frac{1}{4}$$

Finally, the equation of the perpendicular bisector of PQ is

$$y - 6 = \frac{1}{4}(x - 5) \Rightarrow y - 6 = \frac{1}{4}x - \frac{5}{4}$$

 $\Rightarrow \underline{y = \frac{1}{4}x + \frac{19}{4}}.$

The point R has coordinates (12, 2).



- A circle passes through the points P, Q, and R.
- The chord QR is horizontal.
- (b) Find the equation of the circle.

Solution

Well, the midpoint of QR is (9,2).

Now, the y-coordinate of the circle centre is

$$y = \frac{1}{4}(9) + \frac{19}{4} = 7;$$

(4)

so, the circle centre is (9,7).

Finally, the equation of the circle is

$$(x-9)^2 + (y-7)^2 = (4-9)^2 + (10-7)^2$$

= 25 + 9
= 34;

Dr Oliver

hence,

$$(x-9)^2 + (y-7)^2 = 34.$$

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics