Dr Oliver Mathematics Mathematics: Higher 2011 Paper 1: Non-Calculator 1 hour 30 minutes

The total number of marks available is 70. You must write down all the stages in your working.

Section A

1. Given that

$$\mathbf{p} = \begin{pmatrix} 2 \\ 5 \\ -7 \end{pmatrix}, \mathbf{q} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \text{ and } \mathbf{r} = \begin{pmatrix} -4 \\ 2 \\ 0 \end{pmatrix},$$

(2)

(2)

express $2\mathbf{p} - \mathbf{q} - \frac{1}{2}\mathbf{r}$ in component form.

A.
$$\begin{pmatrix} 1\\9\\-15 \end{pmatrix}$$

B.
$$\begin{pmatrix} 1\\11\\-13 \end{pmatrix}$$

C.
$$\begin{pmatrix} 5 \\ 9 \\ -13 \end{pmatrix}$$

D.
$$\begin{pmatrix} 5\\11\\-15 \end{pmatrix}$$

2. A line l has equation

$$3y + 2x = 6$$

What is the gradient of any line parallel to l?

A.
$$-2$$

B.
$$-\frac{2}{3}$$

C.
$$\frac{3}{2}$$

3. The diagram shows the graph of y = f(x).

(2)

Which of the following shows the graph of y = f(x + 2) - 1?

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics A

В

 \mathbf{C}

D

4. A tangent to the curve with equation

$$y = x^3 - 2x$$

(2)

is drawn at the point (2,4).

What is the gradient of this tangent?

A. 2

B. 3

Mathematics

C. 4

D. 10

(2)

5. If

$$x^2 - 8x + 7$$

is written in the form

$$(x-p)^2 + q,$$

what is the value of q?

A. -9

B. -1

C. 7

D. 23

6. The point P(2, -3) lies on the circle with centre C as shown.

(2)

The gradient of CP is -2.

What is the equation of the tangent at P?

A.
$$y + 3 = -2(x - 2)$$

B.
$$y - 3 = -2(x + 2)$$

C.
$$y + 3 = \frac{1}{2}(x - 2)$$

D.
$$y - 3 = \frac{1}{2}(x + 2)$$

7. A function f is defined on the set of real numbers by

$$f(x) = x^3 - x^2 + x + 3.$$

What is the remainder when f(x) is divided by (x-1)?

- B. 2
- C. 3
- D. 4

What is the gradient of the line?

A.
$$\frac{1}{\sqrt{3}}$$

$$B. \ \frac{1}{\sqrt{2}}$$

C.
$$\frac{1}{2}$$

$$D. \frac{\sqrt{3}}{2}$$

9. The discriminant of a quadratic equation is 23.

Here are two statements about this quadratic equation:

- (1) the roots are real;
- (2) the roots are rational.

Which of the following is true?

- A. Neither statement is correct.
- B. Only statement (1) is correct.
- C. Only statement (2) is correct.
- D. Both statements are correct.

10. Solve

$$2\cos x = \sqrt{3} \tag{2}$$

(2)

(2)

for x, where $0 \le x < 2\pi$.

B.
$$\frac{1}{3}\pi$$
 and $\frac{2}{3}\pi$

C.
$$\frac{1}{6}\pi$$
 and $\frac{5}{6}\pi$

D.
$$\frac{1}{6}\pi$$
 and $\frac{11}{6}\pi$

11. Find

$$\int \left(4x^{\frac{1}{2}} + x^{-3}\right) \,\mathrm{d}x,\tag{2}$$

(2)

where x > 0.

A.
$$2x^{-\frac{1}{2}} - 3x^{-4} + c$$

B.
$$2x^{-\frac{1}{2}} - \frac{1}{2}x^{-2} + c$$

C.
$$\frac{8}{3}x^{\frac{3}{2}} - 3x^{-4} + c$$

D.
$$\frac{8}{3}x^{\frac{3}{2}} - \frac{1}{2}x^{-2} + c$$

12. The diagram shows two right-angled triangles with sides and angles as given.

What is the value of $\sin(p+q)$?

A.
$$\frac{2}{\sqrt{5}} + \frac{2}{3}$$

B.
$$\frac{2}{\sqrt{5}} + \frac{\sqrt{5}}{3}$$

C.
$$\frac{2}{3} + \frac{2}{3\sqrt{5}}$$

D.
$$\frac{4}{3\sqrt{5}} + \frac{1}{3}$$

13. Given that

$$f(x) = 4\sin 3x, (2)$$

find f'(0).

- B. 1
- C. 12
- D. 36

The vectors ${\bf p}$ and ${\bf q}$ are as represented in the diagram. What is the value of ${\bf p}\cdot{\bf q}$?

- A. 9
- B. $\frac{9}{2}$
- C. $\frac{9}{\sqrt{2}}$
- D. 0

$$S(-4,5,1), T(-16,-4,16), \text{ and } U(-24,-10,26)$$

are collinear, calculate the ratio in which T divides SU.

- A. 2:3
- B. 3:2
- C. 2:5
- D. 3:5

$$\int \frac{1}{3x^4} \, \mathrm{d}x,\tag{2}$$

(2)

(2)

where $x \neq 0$.

A.
$$-\frac{1}{9x^3} + c$$

B.
$$-\frac{1}{x^3} + c$$

C.
$$\frac{1}{x^3} + c$$

D.
$$\frac{1}{12x^3} + c$$

17. The diagram shows the graph of a cubic.

(2)

(2)

What is the equation of this cubic?

A.
$$y = -x(x+1)(x-2)$$

B.
$$y = -x(x-1)(x+2)$$

C.
$$y = x(x+1)(x-2)$$

D.
$$y = x(x-1)(x+2)$$

18. If

$$f(x) = (x - 3)(x + 5),$$

for what values of x is the graph of y = f(x) above the x-axis?

A.
$$-5 < x < 3$$

B.
$$-3 < x < 5$$

C.
$$x < -5, x > 3$$

D.
$$x < -3, x > 5$$

19. Which of the following diagrams represents the graph with equation $\log_3 y = x$? (2)

A

В

C

D

20. On a suitable domain, D, a function g is defined by

$$g(x) = \sin^2 \sqrt{x - 2}.$$

(2)

Which of the following gives the real values of x in D and the corresponding values of A. $x \ge 0$ and $-1 \le g(x) \le 1$ g(x)?

A.
$$x \ge 0$$
 and $-1 \le g(x) \le 1$

- B. $x \ge 0$ and $0 \le g(x) \le 1$
- C. $x \ge 2$ and $-1 \le g(x) \le 1$
- D. $x \ge 2$ and $0 \le g(x) \le 1$

Section B

21. A quadrilateral has vertices A(-1,8), B(7,12), C(8,5), and D(2,-3) as shown in the diagram.

(a) Find the equation of diagonal BD.

(2)

(3)

(2)

The equation of diagonal AC is x + 3y = 23.

- (b) Find the coordinates of E, the point of intersection of the diagonals.
 - (5)

(ii) Show that this line passes through E.

(c) (i) Find the equation of the perpendicular bisector of AB.

22. A function f is defined on the set of real numbers by

$$f(x) = (x - 2)(x^2 + 1).$$

- (a) Find where the graph of y = f(x) cuts:
 - (i) the x-axis,

Mathematics

- (ii) the y-axis
- (b) Find the coordinates of the stationary points on the curve with equation y = f(x) and determine their nature. (8)
- (c) On separate diagrams sketch the graphs of: (3)
 - (i) y = f(x),
 - (ii) y = -f(x).
- 23. (a) Solve (5)

$$\cos 2x^\circ - 3\cos x^\circ + 2 = 0$$

for $0 \le x < 360$.

(b) Hence solve $\cos 4x^{\circ} - 3\cos 2x^{\circ} + 2 = 0$ (2)

for $0 \le x < 360$.

Or Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics