

Dr Oliver Mathematics
Cambridge O Level Additional Mathematics
2007 November Paper 2: Calculator
2 hours

The total number of marks available is 80.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You must write down all the stages in your working.

1. The two variables x and y are related by the equation

$$yx^2 = 800.$$

- (a) Obtain an expression for $\frac{dy}{dx}$ in terms of x . (2)
- (b) Hence find the approximate change in y as x increases from 10 to $10 + p$, where p is small. (2)

2. Solve the equation

$$3 \sin\left(\frac{1}{2}x - 1\right) = 1,$$

for $0 < x < 6\pi$ radians.

- (a) Express

$$9^{x+1}$$

(1)

as a power of 3.

- (b) Express

$$\sqrt[3]{27^{2x}}$$

(1)

as a power of 3.

- (c) Express

$$\frac{54 \times \sqrt[3]{27^{2x}}}{9^{x+1} + 216(3^{2x-1} - 1)}$$

(3)

as a fraction in its simplest form.

4. A cycle shop sells three models of racing cycles, A , B , and C .

The table below shows the numbers of each model sold over a four-week period and the cost of each model in £.

	<i>A</i>	<i>B</i>	<i>C</i>
1	8	12	4
2	7	10	2
3	10	12	0
4	6	8	4
Cost, £	300	500	800

In the first two weeks the shop banked 30% of all money received, but in the last two weeks the shop only banked 20% of all money received.

(a) Write down three matrices such that matrix multiplication will give the total amount of money banked over the four-week period. (2)

(b) Hence evaluate this total amount. (4)

5. (a) Expand $(1 + x)^5$. (1)

(b) Hence express $(1 + \sqrt{2})^5$ in the form $a + b\sqrt{2}$, (3)

where a and b are integers.

(c) Obtain the corresponding result for $(1 - \sqrt{2})^5$. (2)

and hence evaluate

$$(1 + \sqrt{2})^5 + (1 - \sqrt{2})^5.$$

6. Two circular flower beds have a combined area of $\frac{29}{2}\pi \text{ m}^2$. (6)

The sum of the circumferences of the two flower beds is $10\pi \text{ m}$.

Determine the radius of each flower bed.

7. The position vectors of points A and B , relative to an origin O , are $2\mathbf{i} + 4\mathbf{j}$ and $6\mathbf{i} + 10\mathbf{j}$ respectively.

The position vector of C , relative to O , is $k\mathbf{i} + 25\mathbf{j}$, where k is a positive constant.

(a) Find the value of k for which the length of BC is 25 units. (3)

(b) Find the value of k for which ABC is a straight line. (3)

8. Given that $x \in \mathbb{R}$ and that

(7)

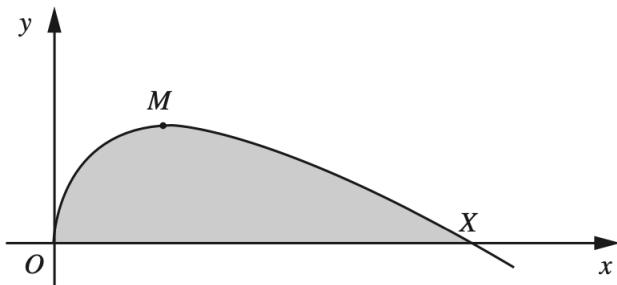
- $\mathcal{E} = \{x : 2 < x < 10\}$,
- $A = \{x : 3x + 2 < 20\}$, and
- $B = \{x : x^2 < 11x - 28\}$,

find the set of values of x which define

(a) $A \cap B$,
(b) $(A \cup B)'$.

9. A particle travels in a straight line so that, t s after passing through a fixed point O , its speed, v ms^{-1} , is given by

$$v = 8 \cos\left(\frac{1}{2}t\right).$$


(a) Find the acceleration of the particle when $t = 1$. (3)

The particle first comes to instantaneous rest at the point P .

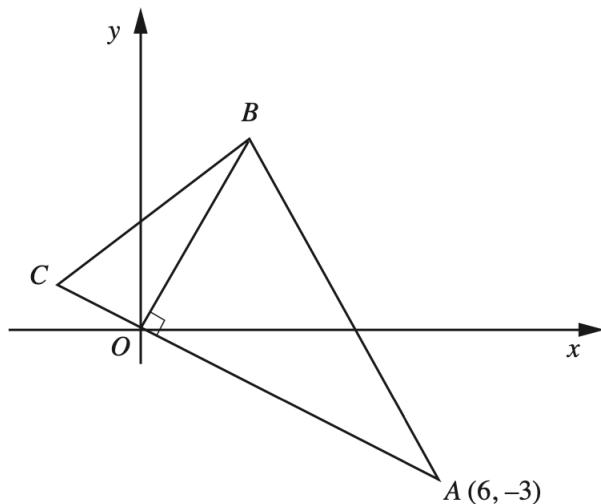
(b) Find the distance OP . (4)

10. The diagram shows part of the curve

$$y = 4\sqrt{x} - x.$$

The origin O lies on the curve and the curve intersects the positive x -axis at X .

The maximum point of the curve is at M .


Find

(a) the coordinates of X and of M , (5)

(b) the area of the shaded region. (4)

11. Solutions to this question by accurate drawing will not be accepted.

The diagram shows a triangle ABC in which A is the point $(6, -3)$.

The line AC passes through the origin O .

The line OB is perpendicular to AC .

(a) Find the equation of OB . (2)

The area of triangle AOB is 15 units 2 .

(b) Find the coordinates of B . (3)

The length of AO is 3 times the length of OC .

(c) Find the coordinates of C . (2)

The point D is such that the quadrilateral $ABCD$ is a kite.

(d) Find the area of $ABCD$. (2)

EITHER

12. The function f is defined, for $x > 0$, by

$$f : x \mapsto \ln x.$$

(a) State the range of f . (1)

(b) State the range of f^{-1} . (1)

(c) On the same diagram, sketch and label the graphs of $y = f(x)$ and $y = f^{-1}(x)$. (2)

The function g is defined, for $x > 0$, by

$$g : x \mapsto 3x + 2.$$

(d) Solve the equation

$$fg(x) = 3. \quad (2)$$

(e) Solve the equation

$$f^{-1}g^{-1}(x) = 7. \quad (4)$$

OR

13. (a) Find the values of k for which

$$y = kx + 2$$

is a tangent to the curve

$$y = 4x^2 + 2x + 3.$$

(b) Express

$$4x^2 + 2x + 3 \quad (3)$$

in the form

$$a(x + b)^2 + c,$$

where a , b , and c are constants.

(c) Determine, with explanation, whether or not the curve

(2)

$$y = 4x^2 + 2x + 3$$

meets the x -axis.

The function f is defined by

$$f : x \mapsto 4x^2 + 2x + 3,$$

where $x \geq p$.

(d) Determine the smallest value of p for which f has an inverse.

(1)