
Dr Oliver Mathematics Worked Examples Area 8

From: PreMath, 14 January 2024

- 1. We have the following:
 - a red square, with area 4 cm²,
 - a yellow triangle,
 - a green square, with area 64 cm², and
 - the total length of these three shapes is 20 cm.

The diagram is **NOT** drawn accurately

Find the area of the yellow triangle.

Solution

Red square: $4 \text{ cm}^2 \text{ is } 2 \text{ cm} \times 2 \text{ cm}$.

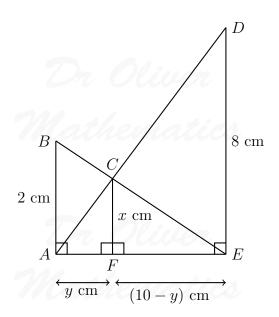
Green square: $64 \text{ cm}^2 \text{ is } 8 \text{ cm} \times 8 \text{ cm}$.

Now, the length of the whole things is 20 cm:

red square + yellow triangle + green square = 20

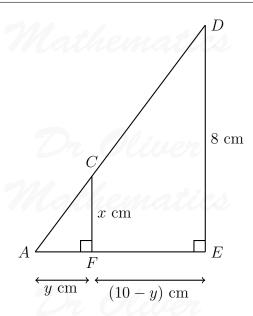
 \Rightarrow 2 + yellow triangle + 8 = 20

 \Rightarrow yellow triangle = 10,


and so the base of the yellow triangle is $10~\mathrm{cm}$.

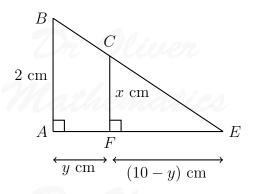
Now, we re-draw the picture, sticking labels on points.

• Let CF = x cm be the height of the triangle.


• Let AF = y cm such that $\angle AFC = 90^{\circ}$.

Then

Triangles ACF and ADE are similar:


Dr Oliver

So

$$\frac{y}{10} = \frac{x}{8} \Rightarrow y = \frac{5}{4}x \quad (1).$$

Triangles CEF and ABC are similar:

So

$$\frac{10 - y}{10} = \frac{x}{2} \Rightarrow 10 - y = 5x$$
$$\Rightarrow y = 10 - 5x \quad (2).$$

Do (1) = (2):

$$\frac{5}{4}x = 10 - 5x \Rightarrow \frac{25}{4}x = 10$$
$$\Rightarrow x = \frac{8}{5};$$

Dr Oliver

so, the height of the green triangle is $\frac{8}{5}$ cm.

Finally,

area of the yellow triangle =
$$\frac{1}{2} \times \text{base} \times \text{height}$$

= $\frac{1}{2} \times 10 \times \frac{8}{5}$
= $\frac{8 \text{ cm}^2}{2}$.

Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics