Dr Oliver Mathematics Mathematics: Advanced Higher 2007 Paper 3 hours

The total number of marks available is 100. You must write down all the stages in your working.

1. Express the binomial expansion of

$$\left(x-\frac{2}{x}\right)^4$$

(4)

in the form

$$ax^4 + bx^2 + c + \frac{d}{x^2} + \frac{e}{x^4}$$

for integers a, b, c, d, and e.

Solution

$$\begin{array}{c|cccc} \times & x & -\frac{2}{x} \\ \hline x & x^2 & -2 \\ -\frac{2}{x} & -2 & +\frac{4}{x^2} \end{array}$$

$$\left(x - \frac{2}{x}\right)^2 = x^2 - 4 + \frac{4}{x^2}$$

$$\begin{array}{|c|c|c|c|c|c|} \hline \times & x^2 & -4 & +\frac{4}{x^2} \\ \hline x^2 & x^4 & -4x^2 & +4 \\ -4 & -4x^2 & +16 & -\frac{16}{x^2} \\ +\frac{4}{x^2} & +4 & -\frac{16}{x^2} & +\frac{16}{x^4} \\ \hline \end{array}$$

$$\left(x - \frac{2}{x}\right)^4 = \left(x - \frac{2}{x}\right)^2 \left(x - \frac{2}{x}\right)^2$$
$$= x^4 - 8x^2 + 24 - \frac{32}{x^2} + \frac{16}{x^4};$$

hence, $\underline{a=1}$, $\underline{b=-8}$, $\underline{c=24}$, $\underline{d=-32}$, and $\underline{e=16}$.

2. Obtain the derivative of each of the following functions:

(a)
$$f(x) = \exp(\sin 2x), \tag{3}$$

Solution

$$f(x) = \exp(\sin 2x) \Rightarrow f'(x) = \exp(\sin 2x) \cdot \cos 2x \cdot 2$$
$$\Rightarrow \underline{f'(x) = 2\cos 2x \exp(\sin 2x)}.$$

(b)
$$y = 4^{(x^2+1)}$$
.

Solution

$$y = 4^{(x^2+1)} \Rightarrow \ln y = \ln 4^{(x^2+1)}$$

$$\Rightarrow \ln y = (x^2+1) \ln 4$$

$$\Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = 2x \ln 4$$

$$\Rightarrow \frac{dy}{dx} = 2xy \ln 4$$

$$\Rightarrow \frac{dy}{dx} = 2x(\ln 4)4^{(x^2+1)}.$$

3. Show that (4)

$$z = 3 + 3i$$

is a root of the equation

$$z^3 - 18z + 108 = 0$$

and obtain the remaining roots of the equation.

Solution

Another root is $\underline{z=3-3i}$.

	×	z	-3	-3i
	z	z^2	-3z	-3zi
	-3	-3z	+9	+9i
4	+3i	+3zi	-9i	+9

Now,

$$(z-3-3i)(z-3+3i) = z^2-6z+18.$$

Next,

$$\frac{+108}{+18} = +6$$

and so we have

$$z^3 - 18z + 108 = (z^2 - 6z + 18)(z + 6)$$

and, finally, $\underline{z=-6}$ is our third root.

4. (a) Express

$$\frac{2x^2 - 9x - 6}{x(x^2 - x - 6)}\tag{3}$$

in partial fractions.

Solution

$$\frac{2x^2 - 9x - 6}{x(x^2 - x - 6)} \equiv \frac{2x^2 - 9x - 6}{x(x - 3)(x + 2)}$$
$$\equiv \frac{A}{x} + \frac{B}{x - 3} + \frac{C}{x + 2}$$
$$\equiv \frac{A(x - 3)(x + 2) + Bx(x + 2) + Cx(x - 3)}{x(x - 3)(x + 2)}$$

and so

$$2x^{2} - 9x - 6 \equiv A(x-3)(x+2) + Bx(x+2) + Cx(x-3).$$

$$\underline{x=0}$$
: $-6 = -6A \Rightarrow A = 1$.

$$x = -2$$
: $20 = 10C \Rightarrow C = 2$.

$$\overline{x = 3}$$
: $-15 = 15B \Rightarrow B = -1$.

Hence,

$$\frac{2x^2 - 9x - 6}{x(x^2 - x - 6)} = \frac{1}{x} - \frac{1}{x - 3} + \frac{2}{x + 2}.$$

(b) Given that

$$\int_{4}^{6} \frac{2x^2 - 9x - 6}{x(x^2 - x - 6)} = \ln \frac{m}{n},\tag{3}$$

determine values for the integers m and n.

Solution

$$\int_{4}^{6} \frac{2x^{2} - 9x - 6}{x(x^{2} - x - 6)} dx = \int_{4}^{6} \left(\frac{1}{x} - \frac{1}{x - 3} + \frac{2}{x + 2}\right) dx$$

$$= \left[\ln|x| - \ln|x - 3| + 2\ln|x + 2|\right]_{x = 4}^{6}$$

$$= \left(\ln 6 - \ln 3 + 2\ln 8\right) - \left(\ln 4 - \ln 1 + 2\ln 6\right)$$

$$= \left(\ln 6 - \ln 3 + \ln 8^{2}\right) - \left(\ln 4 - \ln 1 + \ln 6^{2}\right)$$

$$= \ln 128 - \ln 144$$

$$= \ln \frac{128}{144}$$

$$= \ln \frac{8}{9};$$

hence, $\underline{m} = 8$ and $\underline{n} = 9$.

5. Matrices **A** and **B** are defined by

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 1 & 2 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} x+2 & x-2 & x+3 \\ -4 & 4 & 2 \\ 2 & -2 & 3 \end{pmatrix}.$$

(a) Find the product **AB**.

Solution

$$\mathbf{AB} = \left(\begin{array}{ccc} x & x & x \\ -6 & 6 & -1 \\ 0 & 0 & 8 \end{array} \right).$$

(2)

(2)

(b) Obtain the determinants of ${\bf A}$ and of ${\bf AB}$.

Solution

$$\mathbf{A} = (1 \times 3) - (0 \times 0) + [(-1) \times 0]$$
$$= \underline{3}$$

and

$$\mathbf{AB} = (x \times 48) - [x \times (-48)] + (x \times 0)$$

= 96x.

(c) Hence, or otherwise, obtain an expression for det **B**.

(1)

Solution

$$\det \mathbf{B} = \frac{96x}{3} = \underline{32x}.$$

6. (a) Find the Maclaurin series for $\cos x$ as far as the term in x^4 .

(2)

Solution

$$\cos x = \underline{1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + \dots}$$

(b) Deduce the Maclaurin series for $f(x) = \frac{1}{2}\cos 2x$ as far as the term in x^4 .

(2)

Solution

$$f(x) = \frac{1}{2} \left[1 - \frac{1}{2} (2x)^2 + \frac{1}{24} (2x)^4 + \ldots \right]$$

= $\frac{1}{2} \left[1 - 2x^2 + \frac{2}{3} x^4 + \ldots \right]$
= $\frac{1}{2} - x^2 + \frac{1}{3} x^4 + \ldots$

(c) Hence write down the first three non-zero terms of the series for f(3x).

(1)

Solution

$$f(3x) = \frac{1}{2} - (3x)^2 + \frac{1}{3}(3x)^4 + \dots$$
$$= \frac{1}{2} - 9x^2 + 27x^4 + \dots$$

7. Use the Euclidean algorithm to find integers p and q such that

(4)

$$599p + 53q = 1.$$

$$55 = 16 \times 3 + 5$$

$$55 = 16 \times 3 + 5$$

$$16 = 5 \times 3 + 1$$

and so we have

$$1 = 16 - 5 \times 3$$

$$= 16 - 3(55 - 16 \times 3)$$

$$= 16 \times 10 - 55 \times 3$$

$$= 10(599 - 53 \times 11) - 55 \times 3$$

$$= \underline{599 \times 10 - 53 \times 113};$$

hence, p = 10 and q = -113.

8. Obtain the general solution of the equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 6\frac{\mathrm{d}y}{\mathrm{d}x} + 9y = \mathrm{e}^{2x}.$$

(6)

Solution

Complementary function:

$$m^{2} + 6m + 9 = 0 \Rightarrow (m+3)^{2} = 0 \Rightarrow m = -3 \text{ (repeated root)}$$

and hence the complementary function is

$$y = (A + Bx)e^{-3x}.$$

Particular integral: try

$$y = Ce^{2x} \Rightarrow \frac{dy}{dx} = 2Ce^{2x} \Rightarrow \frac{d^2y}{dx^2} = 4Ce^{2x}.$$

Substitute into the differential equation:

$$4Ce^{2x} + 12Ce^{2x} + 9Ce^{2x} \equiv e^{2x} \Rightarrow C = \frac{1}{25}.$$

Hence the particular integral is $y = \frac{1}{25}e^{2x}$.

General solution: hence the general solution is

$$y = (A + Bx)e^{-3x} + \frac{1}{25}e^{2x}.$$

$$\sum_{r=1}^{n} (4 - 6r) = n - 3n^2. \tag{2}$$

(1)

(2)

Solution

$$\sum_{r=1}^{n} (4 - 6r) = 4 \sum_{r=1}^{n} 1 - 6 \sum_{r=1}^{n} r$$

$$= 4n - 6 \times \frac{1}{2} n(n+1)$$

$$= 4n - 3n(n+1)$$

$$= 4n - 3n^{2}n - 3n$$

$$= n - 3n^{2},$$

as required.

(b) Hence write down a formula for

$$\sum_{r=1}^{2q} (4 - 6r).$$

Solution

$$\sum_{r=1}^{2q} (4 - 6r) = (2q) - 3(2q)^{2}$$
$$= 2q - 12q^{2}.$$

(c) Show that

$$\sum_{r=q+1}^{2n} (4-6r) = q - 9q^2.$$

 $\sum_{r=q+1}^{2q} (4-6r) = \sum_{r=1}^{2q} (4-6r) - \sum_{r=1}^{q} (4-6r)$ $= (2q - 12q^2) - (q - 3q^2)$ $= 2q - 12q^2 - q + 3q^2$

$$= 2q - 12q$$

$$= \underline{q - 9q^2},$$

as required.

10. (a) Use the substitution $u = 1 + x^2$ to obtain

$$\int_0^1 \frac{x^3}{(1+x^2)^4} \, \mathrm{d}x.$$

(5)

Solution

$$u = 1 + x^2 \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 2x$$

 $\Rightarrow \mathrm{d}u = 2x \,\mathrm{d}x$

and

$$x = 0 \Rightarrow u = 1 \text{ and } x = 1 \Rightarrow u = 2.$$

Now,

$$\int_{0}^{1} \frac{x^{3}}{(1+x^{2})^{4}} dx = \frac{1}{2} \int_{0}^{1} \frac{x^{2}}{(1+x^{2})^{4}} 2x dx$$

$$= \frac{1}{2} \int_{0}^{1} \frac{(1+x^{2})-1}{(1+x^{2})^{4}} 2x dx$$

$$= \frac{1}{2} \int_{1}^{2} \frac{u-1}{u^{4}} du$$

$$= \frac{1}{2} \int_{1}^{2} (u^{-3} - u^{-4}) du$$

$$= \frac{1}{2} \left[-\frac{1}{2}u^{-2} + \frac{1}{3}u^{-3} \right]_{u=1}^{2}$$

$$= \frac{1}{2} \left\{ \left(-\frac{1}{8} + \frac{1}{24} \right) - \left(-\frac{1}{2} + \frac{1}{3} \right) \right\}$$

$$= \frac{1}{24}.$$

A solid is formed by rotating the curve

$$y = \frac{x^{\frac{3}{2}}}{(1+x^2)^2}$$

between x = 0 and x = 1 through 360° about the x-axis.

(b) Write down the volume of this solid.

(1)

(1)

Solution

Volume =
$$\int_0^1 \pi \left(\frac{x^{\frac{3}{2}}}{(1+x^2)^2} \right)^2 dx$$

= $\pi \int_0^1 \frac{x^3}{(1+x^2)^4} dx$
= $\frac{1}{24}\pi$.

11. (a) Given that

$$|z - 2| = |z + \mathbf{i}|,\tag{3}$$

where z = x + iy, show that

$$ax + by + c = 0$$

for suitable values of a, b, and c.

Solution

$$|z - 2| = |z + i| \Rightarrow |x + iy - 2|^2 = |x + iy + i|^2$$

$$\Rightarrow (x - 2)^2 + y^2 = x^2 + (y + 1)^2$$

$$\Rightarrow (x^2 - 4x + 4) + y^2 = x^2 + (y^2 + 2y + 1)$$

$$\Rightarrow -4x + 4 = 2y + 1$$

$$\Rightarrow \underline{4x + 2y - 3} = 0;$$

hence, $\underline{a} = \underline{4}$, $\underline{b} = \underline{2}$, and $\underline{c} = -\underline{3}$.

(b) Indicate on an Argand diagram the locus of complex numbers z which satisfy

$$|z-2| = |z+i|.$$

Mathematics

Solution

$$4x + 2y - 3 = 0 \Rightarrow 2y = -4x + 3$$
$$\Rightarrow y = -2x + \frac{3}{2}$$

and

$$0 = -2x + \frac{3}{2} \Rightarrow x = \frac{3}{4}.$$

12. Prove by induction that, for a > 0,

$$(1+a)^n \geqslant 1 + na$$

(5)

for all positive integers n.

Solution

 $\underline{n=1}$: LHS = $(1+a)^1 = 1+a$ and RHS = $1+(1\times a) = 1+a$ and so the solution is true for n=1.

Suppose the solution is true for n = k, i.e.,

$$(1+a)^k \geqslant 1 + ka.$$

Then

$$(1+a)^{k+1} = (1+a)(1+a)^k$$

$$\ge (1+a)(1+ka)$$

$$= 1 + (k+1)a + ka^2$$

$$> 1 + (k+1)a \quad \text{(since } ka^2 > 0\text{)}$$

and so the result is true for n = k + 1.

Hence, by mathematical induction, the expression is true for all $n \in \mathbb{N}$, as required.

13. A curve is defined by the parametric equations

 $x = \cos 2t, \ y = \sin 2t, \ 0 < t < \frac{\pi}{2}.$

(a) Use parametric differentiation to find $\frac{dy}{dx}$.

(3)

Solution

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -2\sin 2t$$
 and $\frac{\mathrm{d}y}{\mathrm{d}t} = 2\cos 2t$.

Now,

$$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$$
$$= \frac{2\cos 2t}{-2\sin 2t}$$
$$= -\cot 2t.$$

(b) Hence find the equation of the tangent when $t = \frac{\pi}{8}$.

(2)

Solution

$$t = \frac{\pi}{8} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -1, x = \frac{\sqrt{2}}{2}, y = \frac{\sqrt{2}}{2}$$

and the equation of the tangent is

$$y - \frac{\sqrt{2}}{2} = -(x - \frac{\sqrt{2}}{2}) \Rightarrow y - \frac{\sqrt{2}}{2} = -x + \frac{\sqrt{2}}{2}$$
$$\Rightarrow \underline{y = -x + \sqrt{2}}.$$

(c) Obtain an expression for $\frac{d^2y}{dx^2}$ and hence show that

(5)

$$\sin 2t \, \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = k,$$

where k is an integer. State the value of k.

$$\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$$

$$= \frac{d}{dt} \left(\frac{dy}{dx} \right) \frac{dt}{dx}$$

$$= 2 \csc^2 2t \cdot \left(-\frac{1}{2} \csc 2t \right)$$

$$= - \csc^3 2t.$$

Finally,

$$\sin 2t \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = \sin 2t(-\csc^3 2t) + (-\cot 2t)^2$$

$$= -\csc^2 2t + \cot^2 2t$$

$$= -\frac{1}{\sin^2 2t} + \frac{\cos^2 2t}{\sin^2 2t}$$

$$= \frac{\cos^2 2t - 1}{\sin^2 2t}$$

$$= \frac{-\sin^2 2t}{\sin^2 2t}$$

$$= \frac{-1.$$

14. A garden centre advertises young plants to be used as hedging. After planting, the growth G metres (i.e., the increase in height) after t years is modelled by the differential equation

$$\frac{\mathrm{d}G}{\mathrm{d}t} = \frac{25k - G}{25},$$

where k is a constant and G = 0 when t = 0.

(a) Express G in terms of t and k.

Solution

$$\frac{\mathrm{d}G}{\mathrm{d}t} = \frac{25k - G}{25} \Rightarrow \frac{1}{25k - G} \, \mathrm{d}G = \frac{1}{25} \, \mathrm{d}t$$
$$\Rightarrow \int \frac{1}{25k - G} \, \mathrm{d}G = \int \frac{1}{25} \, \mathrm{d}t$$
$$\Rightarrow -\ln|25k - G| = \frac{1}{25}t + c.$$

(4)

Now,

$$G = 0, t = 0 \Rightarrow -\ln 25k = c$$

and

$$-\ln|25k - G| = \frac{1}{25}t - \ln 25k \Rightarrow \ln 25k - \ln|25k - G| = \frac{1}{25}t$$

$$\Rightarrow \ln\left(\frac{25k}{|25k - G|}\right) = \frac{1}{25}t$$

$$\Rightarrow \frac{25k}{|25k - G|} = e^{\frac{1}{25}t}$$

$$\Rightarrow \underline{25ke^{-\frac{1}{25}t}} = |25k - G|.$$

Unless we ditch the absolute value signs:

$$25ke^{-\frac{1}{25}t} = 25k - G \Rightarrow G = 25k - 25ke^{-\frac{1}{25}t}$$
$$\Rightarrow G = 25k(1 - e^{-\frac{1}{25}t}).$$

(b) Given that a plant grows 0.6 metres by the end of 5 years, find the value of k correct to 3 decimal places. (2)

Solution

$$0.6 = 25k(1 - e^{-\frac{1}{5}}) \Rightarrow k = \frac{0.6}{25(1 - e^{-\frac{1}{5}})}$$
$$\Rightarrow k = 0.1323997336 \text{ (FCD)}$$
$$\Rightarrow \underline{k = 0.132(3 \text{ sf})}.$$

(c) On the plant labels it states that the expected growth after 10 years is approximately 1 metre. Is this claim justified?

(2)

Solution

$$G = 25k(1 - e^{-\frac{2}{5}})$$

= 1.091 238 452 (FCD)

so, $\underline{\text{yes}}$, this is claim justified

(d) Given that the initial height of the plants was 0.3 m, what is the likely long-term height of the plants? (2)

Solution

$$t \to \infty \Rightarrow G \to 3.30999334 \text{ (FCD)}$$

so the likely long-term height of the plants is

$$0.3 + 3.309 \dots = 3.6 \text{ m}$$

15. Lines L_1 and L_2 are given by the parametric equations

$$L_1: x = 2 + s, y = -s, z = 2 - s$$

 $L_2: x = -1 - 2t, y = t, z = 2 + 3t.$

(a) Show that L_1 and L_2 do not intersect.

Solution

In L_2 , replace t with -s and then the z-component is z = 2 - 3s. Now,

$$2 - s = 2 - 3s \Rightarrow s = 0$$

(3)

(3)

and now apply that to the x-component: L_1 's component is x = 2 and L_2 's component is x = -1.

So L_1 and L_2 do not intersect.

The line L_3 passes through the point P(1,1,3) and its direction is perpendicular to the directions of both L_1 and L_2 .

(b) Obtain parametric equations for L_3 .

Solution

In L_1 ,

$$\frac{x-2}{1} = \frac{y}{-1} = \frac{z-2}{-1}$$

and, in L_2 ,

$$\frac{x+1}{-2} = \frac{y}{1} = \frac{z-2}{3}.$$

Now,

$$(\mathbf{i}-\mathbf{j}-\mathbf{k}) \times (-2\mathbf{i}+\mathbf{j}+3\mathbf{k}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & -1 \\ -2 & 1 & 3 \end{vmatrix}$$
$$= -2\mathbf{i}-\mathbf{j}-\mathbf{k}.$$

Next, the equation for L_3 is

$$\mathbf{r} = \mathbf{i} + \mathbf{j} + 3\mathbf{k} + u(-2\mathbf{i} - \mathbf{j} - \mathbf{k})$$

= $(1 - 2u)\mathbf{i} + (1 - u)\mathbf{j} + (3 - u)\mathbf{k}$

and so the parametric equations for L_3 are

$$x = 1 - 2u, y = 1 - u, z = 3 - u.$$

(c) Find the coordinates of the point Q where L_3 and L_2 intersect and verify that P lies on L_1 .

Solution

$$-1 - 2t = 1 - 2u \Rightarrow 2u - 2u = 2 \Rightarrow u - t = 1,$$

 $t = 1 - u \Rightarrow u + t = 1,$

and simplify:

$$u = 1$$
 and $t = 0$.

Therefore, Q(-1,0,2).

Does P lies on L_1 ?

$$2+s=1 \Rightarrow s=-1$$

and check in the y- and z-component:

$$y = -(-1) = 1$$
 and $z = 2 - (-1) = 3$.

Hence \underline{P} lies on \underline{L}_1 .

- PQ is the shortest distance between the lines L_1 and L_2 .
- (d) Calculate PQ. (1)

$$PQ = \sqrt{2^2 + 1^2 + 1^2}$$
$$= \underline{\sqrt{6}}.$$

16. (a) The diagram shows part of the graph of

$$(2)$$

$$f(x) = \tan^{-1} 2x$$

and its asymptotes.

State the equations of these asymptotes.

Solution

$$\underline{y = \frac{\pi}{2}}$$
 and $\underline{y = -\frac{\pi}{2}}$.

(b) Use integration by parts to find the area between f(x), the x-axis and the lines x = 0 and $x = \frac{1}{2}$.

Solution

$$u = \tan^{-1} 2x \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{2}{(2x)^2 + 1}$$
 and $\frac{\mathrm{d}v}{\mathrm{d}x} = 1 \Rightarrow v = x$.

Now,

$$\int_0^{\frac{1}{2}} \tan^{-1} 2x \, dx = \left[x \tan^{-1} 2x \right]_{x=0}^{\frac{1}{2}} - \int_0^{\frac{1}{2}} \frac{2x}{4x^2 + 1} \, dx$$

$$= \left(\frac{\pi}{8} - 0 \right) - \frac{1}{4} \int_0^{\frac{1}{2}} \frac{8x}{4x^2 + 1} \, dx$$

$$= \frac{\pi}{8} - \frac{1}{4} \left[\ln \left| 4x^2 + 1 \right| \right]_{x=0}^{\frac{1}{2}}$$

$$= \frac{\pi}{8} - \frac{1}{4} \left(\ln 2 - 0 \right)$$

$$= \frac{\pi}{8} - \frac{1}{4} \ln 2.$$

(c) Sketch the graph of y=|f(x)| and calculate the area between this graph, the x axis, and the lines $x=-\frac{1}{2}$ and $x=\frac{1}{2}$.

Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics

Or Oliver Mathematics 17