Dr Oliver Mathematics Mathematics: National Qualifications N5 2023 Paper 2: Calculator
 1 hour 30 minutes

The total number of marks available is 50 .
You must write down all the stages in your working.

1. A caravan was bought for $£ 20000$.

It depreciated by 11% in the first year.
It then depreciated by a further 6% each year over the next two years.
Calculate the value of the caravan three years after it was bought.

Solution

$$
\begin{aligned}
\text { Value } & =20000 \times(1-0.11) \times(1-0.06)^{2} \\
& =20000 \times 0.89 \times(0.94)^{2} \\
& =£ 15728.08
\end{aligned}
$$

2. The mass of a helium atom is 6.64×10^{-24} grams.

A flask contains 300 grams of helium.
Calculate the number of helium atoms in this flask.

Give your answer in scientific notation, correct to 3 significant figures.

Solution	
	Number of helium atoms $=\frac{300}{6.64 \times 10^{-24}}$ $=4.518072289 \times 10^{25}(\mathrm{FCD})$ $=\underline{\underline{4.52 \times 10^{25}(3 \mathrm{sf})} .}$

3. The diagram shows part of a football pitch.

The penalty spot is marked at point C.
$A B$ is an arc of a circle, centre C, radius 9.15 metres.
Calculate the length of the arc $A B$.

Solution

Well,

$$
\text { the length of arc } \begin{aligned}
A B & =\frac{106}{360} \times(2 \times \pi \times 9.15) \\
& =16.92794842(\mathrm{FCD}) \\
& =\underline{\underline{17.0 \mathrm{~m} \mathrm{(3} \mathrm{sf})}} .
\end{aligned}
$$

4. The diagram shows triangle $J K L$.

- Angle $K J L=25^{\circ}$.
- $J L=10$ metres.
- $K L=7$ metres.

Calculate the size of angle $J K L$.

Solution

Sine rule:

$$
\begin{aligned}
\frac{\sin J K L}{J L}=\frac{\sin K J L}{K L} & \Rightarrow \frac{\sin J K L}{10}=\frac{\sin 25^{\circ}}{7} \\
& \Rightarrow \sin J K L=\frac{10 \sin 25^{\circ}}{7} \\
& \Rightarrow \angle J K L=37.13825451(\mathrm{FCD}) \\
& \Rightarrow \angle J K L=37.1^{\circ}(3 \mathrm{sf}) .
\end{aligned}
$$

5. A logo consists of an H-shape and a regular decagon.

The diagram represents the logo.

Calculate the size of the shaded angle.

Solution

$$
\begin{aligned}
\text { Shaded angle } & =\text { right-angle }+ \text { external angle } \\
& =90+\frac{360}{10} \\
& =90+36 \\
& =\underline{\underline{126^{\circ}}} .
\end{aligned}
$$

6. Nadim bought a flat last year.

The value of the flat has increased by 8% and it is now worth $£ 94500$.
Calculate how much Nadim paid for the flat.

Solution

Well,

$$
\begin{aligned}
\text { new price }=1.08 \times \text { old price } & \Rightarrow 94500=1.08 \times \text { old price } \\
& \Rightarrow \text { old price }=\frac{94500}{1.08} \\
& \Rightarrow \text { old price }=\underline{\underline{£ 87500}} .
\end{aligned}
$$

7. Change the subject of the formula

$$
P=\frac{1}{3} m n-r
$$

to m.

Solution

$$
\begin{aligned}
P=\frac{1}{3} m n-r & \Rightarrow \frac{1}{3} m n=P+r \\
& \Rightarrow m n=3(P+r) \\
& \Rightarrow m=\frac{3(P+r)}{n} .
\end{aligned}
$$

8. A wooden beam is used to support a wall built on horizontal ground as shown in the diagram.

- The edge of the beam, $A B$, is 8 metres long.
- C is at the foot of the wall.
- A is 7 metres from C.
- B is 4 metres from C.

Determine whether the wall is perpendicular to the ground.
Justify your answer.

Solution

Well,

$$
\begin{aligned}
A C^{2}+B C^{2} & =7^{2}+4^{2} \\
& =49+16 \\
& =65 \\
& >64 \\
& =A C^{2} ;
\end{aligned}
$$

the angle $A C B$ is larger than a right-angle so it is not perpendicular to the ground
9. A concrete block is in the shape of a large pyramid with a small pyramid removed.

The large pyramid has a square base of length 90 centimetres.
The small pyramid has a square base of length 40 centimetres and a height of 48 centimetres.

The block has height 60 centimetres.
Calculate the volume of the block.

Solution

Well,

$$
\text { volume of the block }=\text { big pyramid }- \text { small pyramid }
$$

$$
\begin{aligned}
& =\left(\frac{1}{3} \times[48+60] \times 90^{2}\right)-\left(\frac{1}{3} \times 48 \times 40^{2}\right) \\
& =291600-25600 \\
& =\underline{266000 \mathrm{~cm}^{3}} .
\end{aligned}
$$

10. Express

$$
\begin{equation*}
\frac{7}{x-3}-\frac{2}{x}, x \neq 3, x \neq 0 \tag{3}
\end{equation*}
$$

as a single fraction in its simplest form.

Solution

$$
\begin{aligned}
\frac{7}{x-3}-\frac{2}{x} & =\frac{7 x-2(x-3)}{x(x-3)} \\
& =\frac{7 x-2 x+6}{x(x-3)} \\
& =\underline{\underline{\frac{5 x+6}{x(x-3)}}} .
\end{aligned}
$$

11. Anna has a grandfather clock in her house.

The height of the tip of the hour hand above the floor, in centimetres, is given by

$$
h=20 \cos x^{\circ}+147,
$$

where x° is the angle the hour hand has rotated through since 12 o'clock.

Calculate the first two values of x for which the tip of the hour hand is 150 centimetres above the floor.

Solution

$$
\begin{aligned}
h=150 & \Rightarrow 20 \cos x^{\circ}+147=150 \\
& \Rightarrow 20 \cos x^{\circ}=3 \\
& \Rightarrow \cos x^{\circ}=\frac{3}{20} \\
& \Rightarrow x=81.37307344,278.6269266(\mathrm{FCD}) \\
& \Rightarrow x=81.4,279(3 \mathrm{sf}) .
\end{aligned}
$$

12. Simplify

$$
72
$$

Solution

Difference of two squares:

$$
\frac{x^{2}-16}{x^{2}+x-20} .
$$

\square

$$
2
$$

Solution

$$
\begin{aligned}
2 \sin ^{2} x^{\circ}+2 \cos ^{2} x^{\circ} & =2\left(\sin ^{2} x^{\circ}+\cos ^{2} x^{\circ}\right) \\
& =2(1) \\
& =\underline{\underline{2}} .
\end{aligned}
$$

14. A storage unit, built in the shape of a cuboid, is shown.

It has length $(x+7)$ metres, breadth x metres, and height 2 metres.
The volume of this unit is 45 cubic metres.
(a) Show that

$$
2 x^{2}+14 x-45=0
$$

Solution

$$
\begin{aligned}
2 \times x \times(x+7)=45 & \Rightarrow 2 x(x+7)=45 \\
& \Rightarrow 2 x^{2} x+14 x=45 \\
& \Rightarrow \underline{\underline{2 x^{2} x+14 x-45=0}}
\end{aligned}
$$

as required.
(b) Calculate x, the breadth of the storage unit. Give your answer correct to 1 decimal place.

Solution

Quadratic formula: $a=2, b=14$, and $c=-45$:

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-14 \pm \sqrt{14^{2}-4(2)(-45)}}{2(2)} \\
& =\frac{-14 \pm \sqrt{556}}{4} \\
& =-9.394913061,2.394913061(\mathrm{FCD})
\end{aligned}
$$

now, $x>0$ (why?) so

$$
x=2.4 \mathrm{~cm} .
$$

15. In the diagram:

- $A C$ is perpendicular to $B C$,
- $A B=18$ centimetres,
- $B D=6$ centimetres, and
- $B C=8$ centimetres.

The area of triangle $A D E$ is 160 square centimetres.
Calculate the length of $A E$.

Solution

We mark the point on $A E$ which is directly below D as F.

Similar triangles:

$$
\begin{aligned}
\frac{D F}{B C}=\frac{A C}{A B} & \Rightarrow \frac{D F}{8}=\frac{18+6}{18} \\
& \Rightarrow \frac{D F}{8}=\frac{24}{18} \\
& \Rightarrow D F=\frac{32}{3}
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\text { area }=\frac{1}{2} b h & \Rightarrow 160=\frac{1}{2} \times D E \times A E \\
& \Rightarrow 160=\frac{1}{2} \times \frac{32}{3} \times A E \\
& \Rightarrow A E=\frac{160}{\frac{1}{2} \times \frac{32}{3}} \\
& \Rightarrow A E=\frac{160}{\frac{32}{6}} \\
& \Rightarrow A E=30 \mathrm{~cm}
\end{aligned}
$$

