Dr Oliver Mathematics
 Further Mathematics: Core Pure Mathematics 1
 June 2022: Calculator
 1 hour 30 minutes

The total number of marks available is 75 .
You must write down all the stages in your working.
Inexact answers should be given to three significant figures unless otherwise stated.
1.

$$
\mathrm{f}(z)=z^{3}+a z+52, \text { where } a \text { is a real constant. }
$$

Given that $2-3 \mathrm{i}$ is a root of the equation $\mathrm{f}(z)=0$,
(a) write down the other complex root.
(b) Hence,
(i) solve completely $\mathrm{f}(z)=0$,
(ii) determine the value of a.
(c) Show all the roots of the equation $\mathrm{f}(z)=0$ on a single Argand diagram.
2. In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.
Determine the values of x for which

$$
64 \cosh ^{4} x-64 \cosh ^{2} x-9=0
$$

Give your answers in the form $q \ln 2$ where q is rational and in simplest form.
3. (a) Determine the general solution of the differential equation

$$
\begin{equation*}
\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \sin x=e^{2 x} \cos ^{2} x \tag{3}
\end{equation*}
$$

giving your answer in the form $y=\mathrm{f}(x)$.
Given that $y=3$ when $x=0$,
(b) determine the smallest positive value of x for which $y=0$.
4. (a) Use the method of differences to prove that for $n>2$,

$$
\begin{equation*}
\sum_{r=2}^{n} \ln \left(\frac{r+1}{r-1}\right) \equiv \ln \left(\frac{n(n+1)}{2}\right) \tag{4}
\end{equation*}
$$

(b) Hence find the exact value of

$$
\begin{equation*}
\sum_{r=51}^{100} \ln \left(\frac{r+1}{r-1}\right) \tag{3}
\end{equation*}
$$

Give your answer in the form $a \ln \left(\frac{b}{c}\right)$, where a, b, and c are integers to be determined.
5.

$$
\mathbf{M}=\left(\begin{array}{ccc}
a & 2 & -3 \\
2 & 3 & 0 \\
4 & a & 2
\end{array}\right)
$$

where a is a constant.
(a) Show that \mathbf{M} is non-singular for all values of a.
(b) Determine, in terms of a, \mathbf{M}^{-1}.
6. (a) Express as partial fractions

$$
\begin{equation*}
\frac{2 x^{2}+3 x+6}{(x+1)\left(x^{2}+4\right)} . \tag{3}
\end{equation*}
$$

(b) Hence, show that
where a and b are constants to be determined.
7. Given that $z=a+b \mathrm{i}$ is a complex number where a and b are real constants,
(a) show that $z z^{\star}$ is a real number.

Given that

- $z z^{\star}=18$ and
- $\frac{z}{z^{\star}}=\frac{7}{9}+\frac{4 \sqrt{2}}{9} \mathrm{i}$,
(b) determine the possible complex numbers z.

8. (a) Given show that

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta, n \in \mathbb{N}
$$

show that

$$
32 \cos ^{6} \theta \equiv \cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10
$$

Figure 1 shows a solid paperweight with a flat base.

Figure 1: solid paperweight with a flat base

Figure 2 shows the curve with equation

$$
y=H \cos ^{3}\left(\frac{x}{4}\right)
$$

where H is a positive constant and x is in radians.

Figure 2: $y=H \cos ^{3}\left(\frac{x}{4}\right)$

The region R, shown shaded in Figure 2, is bounded by the curve, the line with equation $x=-4$, the line with equation $x=4$, and the x-axis.

The paperweight is modelled by the solid of revolution formed when R is rotated 180° about the x-axis.

Given that the maximum height of the paperweight is 2 cm ,
(b) write down the value of H.
(c) Using algebraic integration and the result in part (a), determine, in cm^{3}, the volume
of the paperweight, according to the model.
Give your answer to 2 decimal places.
(Solutions based entirely on calculator technology are not acceptable.)
(d) State a limitation of the model.
9. (a) Explain why
is an improper integral.
(b) Show that
is divergent.

$$
4 \sinh x=p \cosh x
$$

where p is a real constant.
(c) Given that this equation has real solutions, determine the range of possible values for p.
10. The motion of a pendulum, shown in Figure 3, is modelled by the differential equation

$$
\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} t^{2}}+9 \theta=\frac{1}{2} \cos 3 t
$$

where θ is the angle, in radians, that the pendulum makes with the downward vertical, t seconds after it begins to move.

Figure 3: the motion of a pendulum
(a) (i) Show that a particular solution of the differential equation is

$$
\begin{equation*}
\theta=\frac{1}{12} t \sin 3 t \tag{4}
\end{equation*}
$$

(ii) Hence, find the general solution of the differential equation.

Initially, the pendulum

- makes an angle of $\frac{1}{3} \pi$ radians with the downward vertical and
- is at rest.

Given that, 10 seconds after it begins to move, the pendulum makes an angle of α radians with the downward vertical,
(b) determine, according to the model, the value of α to 3 significant figures.

Given that the true value of α is 0.62 ,
(c) evaluate the model.

The differential equation

$$
\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} t^{2}}+9 \theta=\frac{1}{2} \cos 3 t
$$

models the motion of the pendulum as moving with forced harmonic motion.
(d) Refine the differential equation so that the motion of the pendulum is simple harmonic motion.

