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OCR FMSQ Additional Mathematics

2019 Paper

2 hours

The total number of marks available is 100.
You must write down all the stages in your working.
You are permitted to use a scientific or graphical calculator in this paper.
Final answers should be given correct to three significant figures where appropriate.

1. (2)A committee consists of five people.

The roles of Chairman, Secretary and Treasurer are to be allocated at random from the
committee with no one person taking more than one role.

In how many ways can this allocation of roles be made?

2. (a) (3)Solve the inequality
x2

´ x ´ 12 ď 0.

(b) (2)Illustrate your answer to part (a) on the number line provided.

x
0 1 2 3 4 5 6´1´2´3´4

3. (6)Find the equation of the normal to the curve

y “ x3
´ 2x2

` 2x ` 4

at the point p2, 8q.

4. (a) (2)On the grid provided, sketch the curve

y “ 1
5

ˆ 2x.
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x

y

O 1 2 3 4 5 6´1´2´3

1

2

3

4

5

6

7

8

9

10

´1

(b) (3)Solve algebraically the equation

1
5

ˆ 2x “ 3,

giving your answer correct to 3 significant figures.

5. (5)Solve the equation
log10 x ` log10px ` 2q “ 3 log10 2.

You must show detailed reasoning.

6. Angle θ is such that
tan θ “ 1.5.

(a) (2)Find the two values of θ in the range 0˝ ď θ ď 360˝.

(b) (3)Find the exact values of sin θ.
You must show detailed reasoning.

7. (5)The equation
x3

´ 3x ` k “ 0,

where k is a constant, has a root x “ 2.

Find the numerical value(s) of the other roots of this equation.
You must show detailed reasoning.
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8. Each of five students has a fair coin.
They play a game in which each student tosses their coin and when the result of their
toss is a head then that student is eliminated from the game.
The game continues with the remaining students tossing their coin again.
As before, any student who tosses a head is eliminated.
The game continues until all the students have been eliminated or there is a single
winner.

Calculate the probability that

(a) (2)all students are eliminated after their first toss of the coin,

(b) (4)exactly two students are eliminated after their first toss and exactly two after their
second toss, leaving one winner.

9. The equation
x3

` 2x2
´ x ´ 1 “ 0

has two negative roots, α and β, and one positive root, γ.

(a) (2)By considering a change of sign, show that γ lies in the interval r0, 1s.

(b) (2)Show that

x “

c

x ` 1

x ` 2

is a rearrangement of the equation.

(c) (3)Using the iterative formula

xr`1 “

c

xr ` 1

xr ` 2

with x0 “ 0.8, find γ correct to 3 decimal places, showing the result of each iteration.

10. You are given that the line
y “ 2x ` k

cuts the circle
x2

` y2 “ 5

in two points, A and B.

(a) (2)Show that the x-coordinates of A and B satisfy the equation

5x2
` 4kx ` pk2

´ 5q “ 0.

(b) (2)Hence find the values of k for which the line is a tangent to the circle.
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11. John makes wooden toys in his workshop at home.
He classifies the toys as small or large.

It takes 5 hours to make a small toy and 8 hours to make a large toy.
He works for a maximum of 60 hours each week.

Let x be the number of small toys and y be the number of large toys he makes each
week.

(a) (1)Write down an inequality giving the time constraint.

John knows from experience that

• he needs to make at least 3 large toys each week and

• the number of large toys should be no more than double the number of small toys.

He never leaves any toys unfinished at the end of the week.

(b) (2)From this information, write down two more inequalities in x and y.

(c) (4)On the grid provided, illustrate these three inequalities.
Shade the region that is not required.

x

y

O 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

(d) (2)Find the maximum number of toys that John can make in a week and the number
of hours he would take to make them.

The price for which John sells his wooden toys is such that the profit made is £28 for
each small toy and £60 for each large toy.
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(e) (3)Assuming that at the end of each week he sells all the toys, find the number of each
type of toy he should make to maximise his profit and calculate the profit in this
case.

12. The curve C1 has equation
y “ 10x ´ x2

` k

and passes through the point p5, 10q.

(a) (2)Show that k “ ´15.

(b) (3)Show that there is a maximum value at the point p5, 10q.

The curve C2 with equation
y “ px ´ 3q

2

has been plotted.

x

y

O 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

12

(c) (2)On the same grid, sketch the curve C1.

(d) (2)Find the coordinates of the points of intersection of the curves C1 and C2.

(e) (5)Find the area between the curves C1 and C2.
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13. A straight road runs on a bearing of 060˝ from a point A to a point B, 400 m from A.
A vertical mast, CT , stands at a point C, 300 m due north of A.
From the point A the angle of elevation of the top of the mast, T , is 7˝.
The triangle ABC is on horizontal ground.

(a) (2)Find the height of the mast.

(b) (5)Find the angle of elevation of the top of the mast from point B.

(c) (5)Find the bearing of the base of the mast from point B.

14. Speed bumps are designed to encourage drivers to drive slowly.
On a particular road, the bumps put onto the road are designed to give minimum
discomfort and damage at a speed of 9 ms´1.
Paul is driving along the road at a speed of 14 ms´1 when he sees the warning sign, he
is 50 m before the first bump.
He immediately slows down with uniform deceleration so that when he reaches the first
bump he is travelling at a speed of 9 ms´1.

(a) (3)Calculate the uniform deceleration and the time taken for Paul to reach the first
bump.

Immediately after the bump he accelerates such that at t seconds after leaving the bump
his speed, v ms´1, is given by

v “ 1
100

p15t2 ´ t3q ` 9.

(b) (1)Show that he reaches his original speed of 14 ms´1 in 10 seconds.

(c) (4)Find the distance travelled from the speed bump by the time he reaches this speed.

(d) (3)Find the maximum acceleration in this period.

(e) (1)If all drivers decelerate and accelerate in the same way as Paul, suggest a maximum
distance between bumps to ensure that drivers do not exceed a speed of 14 ms´1

when driving down the road.
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