Dr Oliver Mathematics Cambridge O Level Additional Mathematics 2005 June Paper 1: Calculator 2 hours

The total number of marks available is 80. You must write down all the stages in your working.

1. Given that

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix},$$

find $(A^2)^{-1}$.

2. A student has a collection of 9 CDs, of which 4 are by the Beatles, 3 are by Abba, and 2 are by the Rolling Stones.

She selects 4 of the CDs from her collection.

Calculate the number of ways in which she can make her selection if

(a) her selection must contain her favourite Beatles CD,

Solution
$$\binom{8}{3} = \underline{56}.$$

(b) her selection must contain 2 CDs by one group and 2 CDs by another.

(2)

(3)

(4)

Solution		Mathematica
		Number of different ways
	=	2 Beatles, 2 Abba $+$ 2 Beatles, 2 RS $+$ 2 Abba, 2 RS
	=	$\left(\binom{4}{2} \times \binom{3}{2}\right) + \left(\binom{4}{2} \times \binom{2}{2}\right) + \left(\binom{3}{2} \times \binom{2}{2}\right)$
		= 18 + 6 + 3
		$=$ $\underline{27}$.

3. Given that θ is acute and that

$$\sin\theta = \frac{1}{\sqrt{3}},$$

express, without using a calculator,

$$\frac{\sin\theta}{\cos\theta - \sin\theta},$$

in the form $a + \sqrt{b}$, where a and b are integers.

Solution

Pythagoras' theorem:

$$\begin{split} opp^2 + adj^2 &= hyp^2 \Rightarrow 1^2 + adj^2 = (\sqrt{3})^2 \\ &\Rightarrow 1 + adj^2 = 3 \\ &\Rightarrow adj^2 = 2 \\ &\Rightarrow adj = \sqrt{2} \end{split}$$

and

$$\frac{\sin\theta}{\cos\theta - \sin\theta} = \frac{\frac{1}{\sqrt{3}}}{\frac{\sqrt{2}}{\sqrt{3}} - \frac{1}{\sqrt{3}}}$$

multiply by $\frac{\sqrt{3}}{\sqrt{3}}$:
$$= \frac{1}{\sqrt{2} - 1}$$
$$= \frac{1}{\sqrt{2} - 1} \times \frac{\sqrt{2} + 1}{\sqrt{2} + 1}$$
$$2$$

(5)

$$\begin{array}{c|ccc} \hline \times & \sqrt{2} & +1 \\ \hline \sqrt{2} & 2 & +\sqrt{2} \\ -1 & -\sqrt{2} & -1 \\ \hline \end{array}$$
$$= \frac{\sqrt{2}+1}{1}$$
$$= \underline{\sqrt{2}+1}. \end{array}$$

4. The position vectors of points A and B relative to an origin O are $-3\mathbf{i} - \mathbf{j}$ and $\mathbf{i} + 2\mathbf{j}$ (6) respectively.

The point C lies on AB and is such that $\overrightarrow{AC} = \frac{3}{5}\overrightarrow{AB}$.

Find the position vector of C and show that it is a unit vector.

3

Next,

 $OC = \sqrt{(-0.6)^2 + 0.8^2}$ $=\sqrt{0.36+0.64}$ $=\sqrt{1}$ = 1;

5. The function f is defined, for $0^{\circ} \leq x \leq 180^{\circ}$, by

$$f(x) = A + 5\cos Bx,$$

where A and B are constants.

hence, it is a <u>unit vector</u>.

(a) Given that the maximum value of f is 3, state the value of A.

Solution	
	$3-5 = \underline{-2}.$

(b) State the amplitude of f.

Solution	Dr Olwer	
<u>5</u>		

(c) Given that the period of f is 120° , state the value of B.

$$\frac{360}{120} = \underline{\underline{3}}.$$

(d) Sketch the graph of f.

Solution

Solution

(1)

(3)

(1)

(1)

- 6. Given that each of the following functions is defined for the domain $-2 \le x \le 3$, find the range of
 - (a) $f: x \mapsto 2 3x$,

Solution Well, and so f(-2) = 8 and f(3) = -7 $-7 \le f(x) \le 8$.

(b) $g: x \mapsto |2 - 3x|,$

Solution Well, we have to 'flip' the part where g(x) is negative:

$$0 \leq g(x) \leq 8.$$

(c) $h: x \mapsto 2 - |3x|$.

Solution	
Well,	
	h(-2) = -4 and $f(3) = -7$

(2)

(2)

(1)

and so

$$-7 \leqslant \mathbf{h}(x) \leqslant 2.$$

(d) State which of the functions f, g, and h has an inverse.

Solution f(x) has an <u>inverse</u> but g(x) and h(x) <u>do not</u>.

7. Variables l and t are related by the equation

$$l = l_0 (1 + \alpha)^t,$$

where l_0 and α are constants.

(a) Given that $l_0 = 0.64$ and $\alpha = 2.5 \times 10^{-3}$, find the value of t for which l = 0.66.

(3)
		/

(2)

Solution Now,	
	$0.66 = 0.64(1 + 2.5 \times 10^{-3})^t \Rightarrow \frac{33}{32} = (1.0025)^t$
	$\Rightarrow \ln(\frac{33}{32}) = \ln(1.0025)^t$
	$\Rightarrow \ln(\frac{33}{32}) = t \ln(1.0025)$
	$\ln(\frac{33}{32})$
	$\Rightarrow t = \frac{1}{\ln(1.0025)}$
	$\Rightarrow t = 12.3240489 \text{ (FCD)}$
	$\Rightarrow \underline{t} = 12.3 \ (3 \ \text{sf}).$

(b) Solve the equation

 $1 + \log(8 - x) = \log(3x + 2).$

(4)

Solution

$$1 + \log(8 - x) = \log(3x + 2) \Rightarrow 1 = \log(3x + 2) - \log(8 - x)$$

$$\Rightarrow \log_{10} 10 = \log\left(\frac{3x + 2}{8 - x}\right)$$

$$\Rightarrow 10 = \frac{3x + 2}{8 - x}$$

$$\Rightarrow 10(8 - x) = 3x + 2$$

$$\Rightarrow 80 - 10x = 3x + 2$$

$$\Rightarrow 78 = 13x$$

$$\Rightarrow \underline{x = 6}.$$

8. The table below shows experimental values of the variables x and y which are related by an equation of the form

$$y = kx^n$$
,

where k and n are constants.

x	10	100	1000	10 000
y	1 900	250	31	4

(a) Using draw the graph of $\log y$ against $\log x$.

(3)

(b) Use your graph to estimate the value of k and of n.

Solution	Mathematics
	$y = kx^n \Rightarrow \log y = \log kx^n$
	$\Rightarrow \log y = \log k + \log x^n$
	$\Rightarrow \log y = \log k + n \log x.$
Well,	
	$\log k = 4.1 \Rightarrow k = 12589.25412 \text{ (FCD)}$
and	
	$n = \frac{4.1 - 0}{0 - 4.7}$
	$= -\frac{41}{47}.$
Hence,	
, ,	$\underbrace{y = 12600x^{-0.872}\ (3\ \text{sf})}_{=}.$

9. (a) Determine the set of values of k for which the equation

$$x^2 + 2x + k = 3kx - 1$$

has no real roots.

Solution Now,	$x^{2} + 2x + k = 3kx - 1 \Rightarrow x^{2} + (2 - 3k)x + (k + 1) = 0$
and	
	$b^2 - 4ac < 0 \Rightarrow (2 - 3k)^2 - 4 \times 1 \times (k + 1) < 0$
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
	$\Rightarrow 4 - 12k + 9k^2 - 4k - 4 < 0$ $\Rightarrow 9k^2 - 16k < 0$ $\Rightarrow k(9k - 16) < 0$

(5)

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline & k < 0 & k = 0 & 0 < k < \frac{16}{9} & k = \frac{16}{9} & k > \frac{16}{9} \\ \hline k & | & - & 0 & + & + & + \\ \hline 9k - 16 & | & - & - & 0 & + \\ \hline k(9k - 16) & | & + & 0 & - & 0 & + \\ \hline \end{array}$$

$$\Rightarrow \underline{0 < k < \frac{16}{9}}.$$

(b) Hence state, giving a reason, what can be deduced about the curve $y = (x + 1)^2$ and the line y = 3x - 1.

(2)

(3)

Well, k = 1 and the result from (a) shows that is that it has no real roots. So, the graphs cross <u>do not at all</u>.

10. The remainder when

$$2x^3 + 2x^2 - 13x + 12$$

is divided by (x + a) is three times the remainder when it is divided by (x - a).

(a) Show that

$$2a^3 + a^2 - 13a + 6 = 0.$$

Solution We use synthetic division twice: $\begin{array}{cccc} -13 & 12 \\ 2a^2 + 2a & 2a^3 + 2a^2 - 13a \\ \hline 2a^2 + 2a - 13 & 2a^3 + 2a^2 - 13a + 12 \end{array}$ -132 $\mathbf{2}$ a↓ 2a2 2a + 2and 2-13122-a $2a^2 - 2a$ $-2a^3 + 2a^2 + 13a$ -2a $2a^2 - 2a - 13$ $-2a^3 + 2a^2 + 13a + 12$ $\overline{2}$ -2a + 2

Now,

 $-2a^{3} + 2a^{2} + 13a + 12 = 3(2a^{3} + 2a^{2} - 13a + 12)$ $\Rightarrow -2a^3 + 2a^2 + 13a + 12 = 6a^3 + 6a^2 - 39a + 36$ $\Rightarrow \quad 0 = 8a^3 + 4a^2 - 52a + 24$ $\Rightarrow 0 = 4(2a^3 + a^2 - 13a + 6)$ $\Rightarrow \quad \underline{2a^3 + a^2 - 13a + 6} = 0,$

as required.

(b) Solve this equation completely.

Solution		
Let		
	f(a) =	$= 2a^3 + a^2 - 13a + 6.$
Then		
	f(1) =	= 2 + 1 - 13 + 6 = -4,
	f(-1) =	= -2 + 1 + 13 + 6 = 18,
	f(2) =	= 16 + 4 - 26 + 6 = 0,
and $(a-2)$ is a	root:	
	2	2 1 -13 6
		\downarrow 4 10 -6
	Mat	
SO		
$2a^{3} +$	$a^2 - 13a + 6 =$	$0 \Rightarrow (a-2)(2a^2 + 5a - 3) = 0$
	add to:	+5
	multiply to:	$(+2) \times (-3) = -6 $
e.g.,		
		$\Rightarrow (a-2)[2a^2 + 6a - a - 3] = 0$
		$\Rightarrow (a - 2)[2a + 6a + 3] = 0$ $\Rightarrow (a - 2)[2a(a + 3) - 1(a + 3)] = 0$
		$\Rightarrow (a-2)(2a(a+3) - 1(a+3)) = 0$
		$\Rightarrow (u-2)(2u-1)(u+3) \equiv 0$
		$\Rightarrow \underline{a = -3, a = \frac{1}{2}, \text{ or } a = 2.}$
		/ · · · ·
		rematics
		10

(5)

11. A particle travels in a straight line so that, t seconds after passing a fixed point A on the line, its acceleration, $a \text{ ms}^{-2}$, is given by

$$a = -2 - 2t.$$

It comes to rest at a point B when t = 4.

(a) Find the velocity of the particle at A.

Solution
Integrate:
$a = -2 - 2t \Rightarrow v = -2t - t^2 + c,$
for some constant c . Now,
$t = 4, v = 0 \Rightarrow 0 = -8 - 16 + c$
$\Rightarrow c = 24.$
So Occuer
$v = -2t - t^2 + 24.$
Hence,
$t = 0 \Rightarrow v = 0 + 0 + 24 = \underline{24 \text{ ms}^{-1}}.$

(b) Find the distance AB.

Solution	
Well,	
	$v = -2t - t^2 + 24 \Rightarrow s = -t^2 - \frac{1}{3}t^3 + 24t + c$
and	
	$AB = \left[-t^2 - \frac{1}{3}t^3 + 24t + c \right]_{x=0}^4$

$$AB = \left[-t^{2} - \frac{1}{3}t^{3} + 24t + c\right]_{x=0}$$

= $\left(-16 - 21\frac{1}{3} + 96 + c\right) - (0 + 0 + 0 + c)$
= $\frac{58\frac{2}{3}}{2}$ m.

(c) Sketch the velocity-time graph for the motion from A to B.

(1)

Solution

(4	.)
	-	1

(3)

EITHER

12. The diagram, which is not drawn to scale, shows part of the graph of

$$y = 8 - e^{2x},$$

(10)

crossing the y-axis at A.

The tangent to the curve at A crosses the x-axis at B.

Find the area of the shaded region bounded by the curve, the tangent, and the x-axis.

Solution	Mathematics	
wen,	$x = 0 \Rightarrow y = 7$	

and

$$y = 0 \Rightarrow 0 = 8 - e^{2x}$$
$$\Rightarrow e^{2x} = 8$$
$$\Rightarrow 2x = \ln 8$$
$$\Rightarrow x = \frac{1}{2} \ln 8;$$

so, A(0,7) and the point where the line through $y = 8 - e^{2x}$ crosses OB is $(\frac{1}{2} \ln 8, 0)$. Now,

$$y = 8 - e^{2x} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -2e^{2x}$$

and

$$x = 0 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -2$$

Now, the equation of the tangent is

$$y - 7 = -2(x - 0) \Rightarrow y = -2x + 7$$

and

$$y = 0 \Rightarrow 0 = -2x + 7$$
$$\Rightarrow 2x = 7$$
$$\Rightarrow x = 3\frac{1}{2};$$

so, $B(3\frac{1}{2}, 0)$. Now,

$$\triangle OAB = \frac{1}{2} \times 3\frac{1}{2} \times 7$$
$$= 12\frac{1}{4}$$

and

integral =
$$\int_{0}^{\frac{1}{2}\ln 8} (8 - e^{2x}) dx$$
$$= \left[8x - \frac{1}{2}e^{2x} \right]_{x=0}^{\frac{1}{2}\ln 8}$$
$$= (4\ln 8 - 4) - \left(0 - \frac{1}{2} \right)$$
$$= 4\ln 8 - 3\frac{1}{2}.$$

Finally,

shaded area = triangle - integral
=
$$12\frac{1}{4} - (4\ln 8 - 3\frac{1}{2})$$

= $(15\frac{3}{4} - 4\ln 8)$ or 7.43 (3 sf).

13. A piece of wire, of length 2 m, is divided into two pieces.

One piece is bent to form a square of side x m and the other is bent to form a circle of radius r m.

(a) Express r in terms of x and show that the total area, $A m^2$, of the two shapes is (4)given by $(\pi + 4)m^2 - 4m + 1$

$$A = \frac{(\pi + 4)x^2 - 4x + 1}{\pi}.$$

Solution Well,	
	$4x + 2\pi r = 2 \Rightarrow 2\pi r = 2 - 4x$ $\Rightarrow r = \frac{1 - 2x}{\pi}$
and	
	$A = x^{2} + \pi \left(\frac{1-2x}{\pi}\right)^{2}$ $= x^{2} + \frac{(1-2x)^{2}}{\pi}$ $= \frac{\pi x^{2} + (1-2x)^{2}}{\pi}$ $\boxed{\frac{\times 1 - 2x}{1 + x^{2} - 2x}}$
	$\begin{vmatrix} -2x \\ -2x \end{vmatrix} + 4x^2$
	$=\frac{\pi x^2 + 1 - 4x + 4x^2}{\pi}$
	$(\pi + 4)x^2 - 4x + 1$
	$ \frac{\pi}{\pi}$,
as required.	Dr. Oliver

Given that x can vary, find

(b) the stationary value of A,

Solution	
Now,	
	$A = \frac{(\pi + 4)x^2 - 4x + 1}{3} \Rightarrow \frac{dA}{dA} = \frac{2(\pi + 4)x - 4}{3}$
_	π dx π
and	
	$\frac{\mathrm{d}A}{\mathrm{d}x} = 0 \Rightarrow \frac{2(\pi+4)x-4}{\mathrm{d}x-4} = 0$
	$dx = \pi$
	$\Rightarrow 2(\pi + 4)x - 4 = 0$
	$\Rightarrow 2(\pi+4)x = 4$
	$\Rightarrow (\pi + 4)x = 2$
	2
	$\Rightarrow x = \frac{1}{\pi + 4}$.
Finally,	
	2
	$x = \frac{2}{\pi + 4} \Rightarrow A = 0.1400247884 \text{ (FCD)}$
	$\Rightarrow \underline{A = 0.140 \ (3 \text{ sf})}.$

(c) the nature of this stationary value.

 $\frac{\mathrm{d}^2 A}{\mathrm{d}x^2} = \frac{2(\pi + 4)}{\pi} > 0$

so this is a <u>minimum</u>.

(2)

Solution Well,