Dr Oliver Mathematics Lower and Upper Bounds: Part 1

1. Karl is setting up a fish tank.

The tank is in the shape of a cuboid measuring 30 cm by 25 cm by 20 cm. These measurements are accurate.

Karl has filled the tank with water to a depth of 18 cm, correct to the nearest centimetre.

Karl has an ornament in the shape of a sphere. The radius of the sphere is 6 cm, correct to the nearest centimetre.

Karl puts the ornament into the tank.

Find out if there is any risk of the water overflowing.

Solution
$17.5 \text{ cm} \leq \text{depth} < 18.5 \text{ cm}$
$5.5 \text{ cm} \leq \text{radius} < 6.5 \text{ cm}.$
Now, the volume of the tank when it is full:
$volume = 30 \times 25 \times 20$ $= 15000 \text{ cm}^3.$
$= 15000 \text{ cm}^3.$

(6)

Next,

upper bound =
$$(30 \times 25 \times 18.5) + (\frac{4}{3} \times \pi \times 6.5^3)$$

= $13\,875 + 1\,150.346\,51$ (FCD)
= $15\,025.346\,51$ (FCD)
> $15\,000;$

hence, there is a risk of the water <u>overflowing</u>.

