Dr Oliver Mathematics Cambridge O Level Additional Mathematics 2004 November Paper 2: Calculator 2 hours

The total number of marks available is 80.

You must write down all the stages in your working.

1. Given that

$$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ -5 & 4 \end{pmatrix},\tag{4}$$

find \mathbf{A}^{-1} and hence solve the simultaneous equations

$$2x + 3y + 4 = 0$$
$$-5x + 4y + 13 = 0.$$

Solution

Well,

$$\mathbf{A}^{-1} = \frac{1}{23} \left(\begin{array}{cc} 4 & -3 \\ 5 & 2 \end{array} \right)$$

SO

$$\begin{pmatrix} 2 & 3 \\ -5 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -4 \\ -13 \end{pmatrix}$$

$$\Rightarrow \frac{1}{23} \begin{pmatrix} 4 & -3 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ -5 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{23} \begin{pmatrix} 4 & -3 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} -4 \\ -13 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{23} \begin{pmatrix} 23 \\ -46 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix};$$

hence,

$$\underline{x = 1, y = -2}$$
.

$$\sqrt{a+b\sqrt{3}} = \frac{13}{4+\sqrt{3}},\tag{4}$$

where a and b are integers, find, without using a calculator, the value of a and b

Solution

$$\sqrt{a + b\sqrt{3}} = \frac{13}{4 + \sqrt{3}} \Rightarrow a + b\sqrt{3} = \left(\frac{13}{4 + \sqrt{3}}\right)^2$$

$$\Rightarrow a + b\sqrt{3} = \frac{169}{19 + 8\sqrt{3}}$$
$$\Rightarrow a + b\sqrt{3} = \frac{169}{19 + 8\sqrt{3}} \times \frac{19 - 8\sqrt{3}}{19 - 8\sqrt{3}}$$

$$\Rightarrow a + b\sqrt{3} = \frac{169(19 - 8\sqrt{3})}{169}$$
$$\Rightarrow a + b\sqrt{3} = 19 - 8\sqrt{3};$$

(5)

so, $\underline{a=19}$ and $\underline{b=-8}$.

3. The diagram shows part of the curve

 $y = 3\sin 2x + 4\cos x.$

Find the area of the shaded region, bounded by the curve, and the coordinate axes.

Solution

Area =
$$\int_0^{\frac{1}{2}\pi} (3\sin 2x + 4\cos x) dx$$
=
$$\left[-\frac{3}{2}\cos 2x + 4\sin x \right]_{x=0}^{\frac{1}{2}\pi}$$
=
$$\left(\frac{3}{2} + 4 \right) - \left(-\frac{3}{2} + 0 \right)$$
=
$$\frac{7}{2}$$
.

4. Find the values of k for which the line

$$y = x + 2$$

(5)

meets the curve

$$y^2 + (x+k)^2 = 2.$$

Solution

×	x	+2
x	x^2	+2x
+2	+2x	+4

and

×	x	+k
\overline{x}	x^2	+kx
+2	+kx	$+k^2$

Now,

$$y^{2} + (x+k)^{2} = 2 \Rightarrow (x+2)^{2} + (x+k)^{2} = 2$$
$$\Rightarrow (x^{2} + 4x + 4) + (x^{2} + 2kx + k^{2}) = 2$$
$$\Rightarrow 2x^{2} + (4+2k)x + (2+k^{2}) = 0.$$

Next,

$$b^{2} - 4ac = 0 \Rightarrow (4 + 2k)^{2} - 4 \times 2 \times (2 + k^{2}) = 0$$

$$\Rightarrow 16 + 16k + 4k^{2} - (16 + 4k^{2}) = 0$$

$$\Rightarrow -4k^{2} + 16k = 0$$

$$\Rightarrow -4k(-k + 4) = 0$$

$$\Rightarrow \underline{k = 0 \text{ or } k = 4}.$$

5. Solve the equation

$$\log_{16}(3x - 1) = \log_4(3x) + \log_4(0.5).$$

(6)

Solution

$$\log_{16}(3x - 1) = \log_{4}(3x) + \log_{4}(0.5)$$

$$\Rightarrow \frac{\log_{4}(3x - 1)}{\log_{4}16} = \log_{4}[3x \times 0.5]$$

$$\Rightarrow \frac{\log_{4}(3x - 1)}{2} = \log_{4}(\frac{3}{2}x)$$

$$\Rightarrow \log_{4}(3x - 1) = 2\log_{4}(\frac{3}{2}x)$$

$$\Rightarrow \log_{4}(3x - 1) = \log_{4}(\frac{3}{2}x)^{2}$$

$$\Rightarrow 3x - 1 = (\frac{3}{2}x)^{2}$$

$$\Rightarrow 3x - 1 = \frac{9}{4}x^{2}$$

$$\Rightarrow 12x - 4 = 9x^{2}$$

$$\Rightarrow 9x^{2} - 12x + 4 = 0$$

add to:
$$-12$$
 multiply to: $(+9) \times (+4) = +36$ -3 (repeated)

$$\Rightarrow (3x - 2)^2 = 0$$

$$\Rightarrow x = \frac{2}{3}.$$

6. Given that

$$x = 3\sin\theta - 2\cos\theta$$
 and $y = 3\cos\theta + 2\sin\theta$,

(a) find the value of the acute angle θ for which x = y,

Solution Now,

$$x = y \Rightarrow 3\sin\theta - 2\cos\theta = 3\cos\theta + 2\sin\theta$$
$$\Rightarrow \sin\theta = 5\cos\theta$$
$$\Rightarrow \tan\theta = 5$$
$$\Rightarrow \theta = 1.373400767 \text{ (FCD)}$$
$$\Rightarrow \theta = 1.37 \text{ (3 sf)}.$$

(b) show that

$$(3)$$

(3)

is constant for all values of θ .

Solution

Now,

X	$3\sin\theta$	$-2\cos\theta$
$3\sin\theta \\ -2\cos\theta$	$ \begin{array}{c c} 9\sin^2\theta \\ -6\sin\theta\cos\theta \end{array} $	$-6\sin\theta\cos\theta + 4\cos^2\theta$

and

×	$3\cos\theta$	$+2\sin\theta$
$3\cos\theta + 2\sin\theta$	$\begin{vmatrix} 9\cos^2\theta \\ +6\sin\theta\cos\theta \end{vmatrix}$	$+6\sin\theta\cos\theta$ $+4\sin^2\theta$

Finally,

$$x^{2} + y^{2}$$

$$= (3 \sin \theta - 2 \cos \theta)^{2} + (3 \cos \theta + 2 \sin \theta)^{2}$$

$$= (9 \sin^{2} \theta - 12 \sin \theta \cos \theta + 4 \cos^{2} \theta) + (9 \cos^{2} \theta + 12 \sin \theta \cos \theta + 4 \sin^{2} \theta)$$

$$= 13 \sin^{2} \theta + 13 \cos^{2} \theta$$

$$= 13(\sin^{2} \theta + \cos^{2} \theta)$$

$$= \underline{13}.$$

7. Given that

$$6x^3 + 5ax - 12a (7)$$

leaves a remainder of -4 when divided by (x-a), find the possible values of a.

Solution

We use synthetic division:

\overline{a}	6	0	$5a$ $6a^2$	-12a
	\downarrow	6a	$6a^2$	$6a^3 + 5a^2$
	6	6a	$6a^2 + 5a$	$6a^3 + 5a^2 - 12a$

Now,

$$6a^3 + 5a^2 - 12a = -4 \Rightarrow 6a^3 + 5a^2 - 12a + 4 = 0.$$

Next, let

$$f(a) = 6a^3 + 5a^2 - 12a + 4:$$

$$f(1) = 6 + 5 - 12 + 4 = 3$$

$$f(-1) = -6 + 5 + 12 + 4 = 15$$

$$f(2) = 48 + 20 - 24 + 4 = 47$$

$$f(-2) = -48 + 20 + 24 + 4 = 0;$$

well, (a + 2) is a root.

SO

$$6a^{3} + 5a^{2} - 12a + 4 = 0 \Rightarrow (a+2)(6a^{2} - 7a + 2) = 0$$
add to:
$$-7$$
multiply to: $(+6) \times (+2) = +12$ \} - 4, -3

e.g.,

$$\Rightarrow (a+2)[6a^2 - 4a - 3a + 2] = 0$$

$$\Rightarrow (a+2)[2a(3a-2) - 1(3a+2)] = 0$$

$$\Rightarrow (a+2)(2a-1)(3a-2) = 0$$

$$\Rightarrow a = -2, a = \frac{1}{2}, \text{ or } a = \frac{2}{3}.$$

(7)

8. A motor boat travels in a straight line across a river which flows at $3~{\rm ms^{-1}}$ between straight parallel banks 200 m apart.

The motor boat, which has a top speed of 6 ms⁻¹ in still water, travels directly from a point A on one bank to a point B, 150 m downstream of A, on the opposite bank.

Assuming that the motor boat is travelling at top speed, find, to the nearest second, the time it takes to travel from A to B.

Solution

Let $v \text{ ms}^{-1}$ be the speed of motor boat.

Now,

$$\tan = \frac{\text{opp}}{\text{adj}} \Rightarrow \tan BAC = \frac{200}{150}$$
$$\Rightarrow \angle BAC = 53.130 \, 102 \, 235 \text{ (FCD)}.$$

Next, we apply the sine rule:

$$\frac{\sin ABC}{AC} = \frac{\sin BAC}{BC} \Rightarrow \frac{\sin ABC}{3} = \frac{\sin BAC}{6}$$

$$\Rightarrow \frac{\sin ABC}{3} = \frac{0.8}{6}$$

$$\Rightarrow \sin ABC = \frac{2}{5}$$

$$\Rightarrow \angle ABC = 23.57817848 \text{ (FCD)}$$

and

$$\angle ACB = 180 - (53.130... + 23.578...)$$

= 103.2917192 (FCD).

Now,

$$\frac{v}{\sin 103.291...} = \frac{6}{\sin 53.130...} \Rightarrow v = \frac{6\sin 103.291...}{\sin 53.130...}$$
$$\Rightarrow v = 7.299090834 \text{ (FCD)}.$$

Finally,

distance =
$$\sqrt{150^2 + 200^2}$$

= 250

and

time taken =
$$\frac{250}{7.299...}$$

= 34.250 841 06 (FCD)
= 34 s (nearest second).

9. In order that each of the equations

$$y = ab^x \quad y = Ax^k \quad px + qy = xy,$$

(7)

where a, b, A, k, p, and q are unknown constants, may be represented by a straight line, they each need to be expressed in the form

$$Y = mX + c$$

where X and Y are each functions of x and/or y, and m and c are constants.

Math		X	m	c
$y = ab^x$				
$y = Ax^k$ $px + qy = xy$,			

Complete the following table and insert in it an expression for Y, X, m, and c for each case.

Solution

Well,

$$y = ab^{x} \Rightarrow \log y = \log(ab^{x})$$
$$\Rightarrow \log y = \log a + \log b^{x}$$
$$\Rightarrow \log y = \log a + x \log b,$$

$$y = Ax^{k} \Rightarrow \log y = \log(Ax^{k})$$

$$\Rightarrow \log y = \log A + \log x^{k}$$

$$\Rightarrow \log y = \log A + k \log x,$$

and

$$px + qy = xy \Rightarrow \frac{px + qy}{xy} = 1$$
$$\Rightarrow \frac{px}{xy} + \frac{qy}{xy} = 1$$
$$\Rightarrow \frac{p}{y} + \frac{q}{x} = 1,$$

and so

Mas	Y	X	m	c
$y = ab^x$	$\log y$	<u>x</u>	$\log b$	$\underline{\underline{\log a}}$
$y = Ax^k$	$\frac{\log y}{}$	$\frac{\log x}{}$	<u>k</u>	$\frac{\log A}{m}$
px + qy = xy	$\frac{1}{y}$	$\frac{1}{x}$	$\frac{-\frac{q}{p}}{}$	$\frac{\frac{1}{p}}{}$

10. The function f is defined by

$$f: x \mapsto |x^2 - 8x + 7|$$

for the domain $3 \le x \le 8$.

(a) By first considering the stationary value of the function

$$x \mapsto x^2 - 8x + 7,$$

(4)

(2)

show that the graph of y = f(x) has a stationary point at x = 4 and determine the nature of this stationary point.

Solution

Now,

$$y = x^{2} - 8x + 7 \Rightarrow \frac{dy}{dx} = 2x - 8$$
$$\Rightarrow \frac{d^{2}y}{dx^{2}} = 2.$$

Now,

$$x = 4 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

and

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2 > 0;$$

Hence, it will have a stationary point at x = 4 and this is a minimum.

(b) Sketch the graph of y = f(x).

Solution

(c) Find the range of f.

(2)

Solution

Well,

$$x = 4 \Rightarrow |4^2 - 8(4) + 7| = 9$$

SO

$$0 \leqslant f(x) \leqslant 9.$$

The function g is defined by

$$g: x \mapsto |x^2 - 8x + 7|$$

for the domain $3 \le x \le k$.

(d) Determine the largest value of k for which \mathbf{g}^{-1} exists.

(1)

Solution

$$\underline{k=4}$$
.

11. The diagram shows a trapezium OABC, where O is the origin.

(10)

The equation of OA is

$$y = 3x$$

and the equation of OC is

$$y + 2x = 0.$$

The line through A perpendicular to OA meets the y-axis at B and BC is parallel to AO.

Given that the length of OA is $\sqrt{250}$ units, calculate the coordinates of A, of B, and of C.

Solution

Let A(x,3x). Then

$$OA = \sqrt{250} \Rightarrow OA^2 = 250$$

$$\Rightarrow x^2 + (3x)^2 = 250$$

$$\Rightarrow 10x^2 = 250$$

$$\Rightarrow x^2 = 25$$

$$\Rightarrow x = 5,$$

so A(5, 15).

Now,

$$m_{OA} = 3 \Rightarrow m_{AB} = -\frac{1}{3}$$

and, so, the equation of AB is

$$y - 15 = -\frac{1}{3}(x - 5).$$

Next,

$$x = 0 \Rightarrow y - 15 = -\frac{1}{3}(0 - 5)$$
$$\Rightarrow y - 15 = 1\frac{2}{3}$$
$$\Rightarrow y = 16\frac{2}{3},$$

so $B(0, 16\frac{2}{3})$.

Finally, the equation of BC is

$$y = 3x + 16\frac{2}{3}$$

and this meets

$$y + 2x = 0 \Rightarrow y = -2x$$

at

$$-2x = 3x + 16\frac{2}{3} \Rightarrow 5x = -16\frac{2}{3}$$
$$\Rightarrow x = -3\frac{1}{3}$$
$$\Rightarrow y = 6\frac{2}{3},$$

so $C(-3\frac{1}{3}, 6\frac{2}{3})$

EITHER

12. A particle, travelling in a straight line, passes a fixed point O on the line with a speed of 0.5 ms^{-1} .

The acceleration, $a \text{ ms}^{-2}$, of the particle, t s after passing O, is given by

$$a = 1.4 - 0.6t$$
.

(a) Show that the particle comes instantaneously to rest when t = 5.

Solution

Now,

$$a = 1.4 - 0.6t \Rightarrow v = 1.4t - 0.3t^2 + c,$$

(4)

(6)

where c is a constant. Next,

$$t = 0, v = 0.5 \Rightarrow 0.5 = 0 - 0 + c$$
$$\Rightarrow c = 0.5$$

and

$$v = 1.4t - 0.3t^2 + 0.5.$$

When t = 5,

$$v = 1.4(5) - 0.3(5^{2}) + 0.5$$
$$= 7 - 7.5 + 0.5$$
$$= 0:$$

hence, the particle comes instantaneously to rest when t = 5.

(b) Find the total distance travelled by the particle between t = 0 and t = 10.

Solution

Well,

$$s_1 = \int_0^5 (1.4t - 0.3t^2 + 0.5) dt$$

$$= \left[0.7t^2 - 0.1t^3 + 0.5t \right]_{x=0}^5$$

$$= (17.5 - 12.5 + 2.5) - (0 - 0 + 0)$$

$$= 7.5$$

and

$$s_2 = \int_5^{10} (1.4t - 0.3t^2 + 0.5) dt$$

$$= [0.7t^2 - 0.1t^3 + 0.5t]_{x=5}^{10}$$

$$= (70 - 100 + 5) - (17.5 - 12.5 + 2.5)$$

$$= -25 - 7.5$$

$$= -32.5.$$

Hence,

distance =
$$|s_1| + |s_2|$$

= 7.5 + 32.5
= $\underline{40 \text{ m}}$.

OR

13. Each member of a set of curves has an equation of the form

$$y = ax + \frac{b}{x^2},$$

where a and b are integers.

(a) For the curve where a=3 and b=2, find the area bounded by the curve, the x-axis, and the lines x=2 and x=4.

(4)

Solution

$$y = 3x + \frac{2}{x^2} = 3x + 2x^{-2}$$

and

$$\int_{2}^{4} (3x + 2x^{-2}) dx = \left[\frac{3}{2}x^{2} - 2x^{-1}\right]_{x=2}^{4}$$

$$= \left(24 - \frac{1}{2}\right) - (6 - 1)$$

$$= 23\frac{1}{2} - 5$$

$$= \underline{18\frac{1}{2}}.$$

Another curve of this set has a stationary point at (2,3).

(b) Find the value of a and of b in this case and determine the nature of the stationary point.

(6)

Solution

Well, (2,3) lies on the curve so

$$3 = 2a + \frac{b}{4}.$$

Now,

$$y = ax + bx^{-2} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = a - 2bx^{-3}$$

and

$$x = 2 \Rightarrow \frac{dy}{dx} = 0$$

$$\Rightarrow a - 2b(2^{-3}) = 0$$

$$\Rightarrow a - \frac{1}{4}b = 0$$

$$\Rightarrow a = \frac{1}{4}b.$$

Next, let $\underline{a} = \underline{1}$ and $\underline{b} = \underline{4}$ (say). Then

$$y = x + 4x^{-2} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 1 - 8x^{-3}$$
$$\Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 24x^{-4}.$$

Now,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow 1 - \frac{8}{x^3} = 0$$
$$\Rightarrow x^3 = 8$$
$$\Rightarrow x = 2$$

and

$$x = 2 \Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{3}{2} > 0;$$

so, it is a minimum.

16