Dr Oliver Mathematics Mathematics: Advanced Higher 2017 Paper 3 hours

The total number of marks available is 100. You must write down all the stages in your working.

1. Write down the binomial expansion

$$\left(\frac{2}{y^2} - 5y\right)^3,$$

(4)

(4)

and simplify your answer.

Solution

$$\left(\frac{2}{y^2} - 5y\right)^3$$

$$= \left(\frac{2}{y^2}\right)^3 + 3\left(\frac{2}{y^2}\right)^2(-5y) + 3\left(\frac{2}{y^2}\right)(-5y)^2 + (-5y)^3$$

$$= \frac{8}{y^6} - \frac{60}{y^3} + 150 - 125y^3.$$

2. Express

$$\frac{x^2 - 6x + 20}{(x+1)(x-2)^2}$$

in partial fractions.

Solution

$$\frac{x^2 - 6x + 20}{(x+1)(x-2)^2} \equiv \frac{A}{(x+1)} + \frac{B}{(x-2)} + \frac{C}{(x-2)^2}$$
$$= \frac{A(x-2)^2 + B(x+1)(x-2) + C(x+1)}{(x+1)(x-2)^2}$$

and so

$$x^{2} - 6x + 20 \equiv A(x-2)^{2} + B(x+1)(x-2) + C(x+1).$$

x = 2: $12 = 3C \Rightarrow C = 4$.

x = -1: $27 = 9A \Rightarrow A = 3$.

 $\overline{x = 0}$: $20 = 3 \cdot 4 - 2B + 4 \Rightarrow 2B = -4 \Rightarrow B = -2$.

Hence,

$$\frac{x^2 - 6x + 20}{(x+1)(x-2)^2} \equiv \frac{3}{(x+1)} - \frac{2}{(x-2)} + \frac{4}{(x-2)^2}.$$

3. On a suitable domain, a function is defined by

$$f(x) = \frac{e^{x^2 - 1}}{x^2 - 1}.$$

Find f'(x), simplifying your answer.

Solution

$$u = e^{x^2 - 1} \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 2x e^{x^2 - 1}$$
$$v = x^2 - 1 \Rightarrow \frac{\mathrm{d}v}{\mathrm{d}x} = 2x.$$

Finally,

$$f(x) = \frac{e^{x^2 - 1}}{x^2 - 1} \Rightarrow f'(x) = \frac{(x^2 - 1) 2x e^{x^2 - 1} - 2x e^{x^2 - 1}}{(x^2 - 1)^2}$$
$$\Rightarrow f'(x) = \frac{2x e^{x^2 - 1} [(x^2 - 1) - 1]}{(x^2 - 1)^2}$$
$$\Rightarrow f'(x) = \frac{2x e^{x^2 - 1} (x^2 - 2)}{(x^2 - 1)^2}.$$

- 4. The fifth term of an arithmetic sequence is -6 and the twelfth term is -34.
 - (a) Determine the values of the first term and the common difference.

(2)

(3)

Solution

5th term: a + 4d = -6 (1) 12th term: a + 11d = -34 (2).

Do (2) - (1):

$$7d = -28 \Rightarrow \underline{d = -4}$$

$$\Rightarrow a - 16 = -6$$

$$\Rightarrow \underline{a = 10}.$$

(3)

(b) Obtain algebraically the value of n for which $S_n = -144$.

Solution

 $S_n = -144 \Rightarrow \frac{1}{2}n[20 - 4(n-1)] = -144$ $\Rightarrow n[20 - 4n + 4] = -288$ $\Rightarrow n(24 - 4n) = -288$ $\Rightarrow 24n - 4n^2 = -288$ $\Rightarrow 4n^2 - 24n - 288 = 0$ $\Rightarrow n^2 - 6n - 72 = 0$

add to: $\begin{pmatrix} -6 \\ \text{multiply to:} & -72 \end{pmatrix} - 12, +6$

$$\Rightarrow (n-12)(n+6) = 0$$

\Rightarrow n = 12 or n = -6;

clearly, $n \neq -6$ and so n = 12.

5. (a) (i) Use Gaussian elimination on the system of equations below to give an expression (4)for z in terms of λ .

$$x + 2y - z = -3$$
$$4x - 2y + 3z = 11$$
$$3x + y + 2\lambda z = 8.$$

$$3x + y + 2\lambda z = 8.$$

Solution

$$\left(\begin{array}{ccc|c}
1 & 2 & -1 & -3 \\
4 & -2 & 3 & 11 \\
3 & 1 & 2\lambda & 8
\end{array}\right)$$

Do $R_2 - 4R_1$ and $R_3 - 3R_1$:

$$\begin{pmatrix}
1 & 2 & -1 & | & -3 \\
0 & -10 & 7 & | & 23 \\
0 & -5 & 2\lambda + 3 & | & 17
\end{pmatrix}$$

Do $2R_3 - R_2$:

$$\left(\begin{array}{ccc|c}
1 & 2 & -1 & -3 \\
0 & -10 & 7 & 23 \\
0 & 0 & 4\lambda - 1 & 11
\end{array}\right)$$

Hence,

$$(4\lambda - 1)z = 11 \Rightarrow z = \frac{11}{4\lambda - 1}.$$

(1)

(1)

(ii) For what value of λ is this system of equations inconsistent?

Solution

$$4\lambda - 1 = 0 \Rightarrow 4\lambda = 1$$

 $\Rightarrow \underbrace{\lambda = \frac{1}{4}}_{}.$

(b) Determine the solution of this system when $\lambda = -2.5$.

Solution

$$\lambda = -2.5 \Rightarrow z = -1$$

$$\Rightarrow -10y - 7 = 23$$

$$\Rightarrow -10y = 30$$

$$\Rightarrow y = -3$$

$$\Rightarrow x - 6 + 1 = -3$$

$$\Rightarrow x = 2;$$

hence,

$$x = 2, y = -3, z = -1.$$

6. Use the substitution $u = 5x^2$ to find the exact value of

$$\int_0^{\frac{1}{\sqrt{10}}} \frac{x}{\sqrt{1 - 25x^4}} \, \mathrm{d}x.$$

Solution

$$u = 5x^{2} \Rightarrow \frac{du}{dx} = 10x$$
$$\Rightarrow du = 10x dx$$
$$\Rightarrow \frac{1}{10} du = x dx$$

and

$$x = 0 \Rightarrow u = 0$$
$$x = \frac{1}{\sqrt{10}} \Rightarrow u = \frac{1}{2}.$$

Now,

$$\int_0^{\frac{1}{\sqrt{10}}} \frac{x}{\sqrt{1 - 25x^4}} dx = \int_0^{\frac{1}{\sqrt{10}}} \frac{x}{\sqrt{1 - (5x^2)^2}} dx$$

$$= \int_0^{\frac{1}{2}} \frac{\frac{1}{10}}{\sqrt{1 - u^2}} du$$

$$= \frac{1}{10} \left[\arcsin u \right]_{u=0}^{\frac{1}{2}}$$

$$= \frac{1}{10} \left(\arcsin \frac{1}{2} - 0 \right)$$

$$= \frac{1}{60} \pi.$$

7. Matrices \mathbf{P} and \mathbf{Q} are defined by

$$\mathbf{P} = \begin{pmatrix} x & 2 \\ -5 & -1 \end{pmatrix} \text{ and } \mathbf{Q} = \begin{pmatrix} 2 & -3 \\ 4 & y \end{pmatrix},$$

where $x, y \in \mathbb{R}$.

(a) Given the determinant of \mathbf{P} is 2, obtain:

(i) The value of x.

(1)

(6)

Solution

$$\det \mathbf{P} = 2 \Rightarrow -x + 10 = 2$$
$$\Rightarrow \underline{x = 8}.$$

(ii) P^{-1} . (1)

(2)

(2)

(4)

Solution

$$\mathbf{P}^{-1} = \frac{1}{2} \begin{pmatrix} -1 & -2 \\ 5 & 8 \end{pmatrix}.$$

(iii) $\mathbf{P}^{-1}\mathbf{Q}^{\mathrm{T}}$, where \mathbf{Q}^{T} is the transpose of \mathbf{Q} .

Solution

$$\mathbf{P}^{-1}\mathbf{Q}^{\mathrm{T}} = \frac{1}{2} \begin{pmatrix} -1 & -2 \\ 5 & 8 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ -3 & y \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 4 & -4 - 2y \\ -14 & 20 + 8y \end{pmatrix}$$
$$= \frac{\begin{pmatrix} 2 & -2 - y \\ -7 & 10 + 4y \end{pmatrix}}{\begin{pmatrix} -10 & -2 & 10 \\ -10 & 10 \end{pmatrix}}$$

The matrix \mathbf{R} is defined by

$$\mathbf{R} = \begin{pmatrix} 5 & -2 \\ z & -6 \end{pmatrix},$$

where $z \in \mathbb{R}$.

(b) Determine the value of z such that \mathbf{R} is singular.

Solution

$$\det \mathbf{R} = 0 \Rightarrow -30 + 2z = 0$$
$$\Rightarrow 2z = 30$$
$$\Rightarrow z = 15.$$

8. Use the Euclidean algorithm to find integers a and b such that

$$1595a + 1218b = 29.$$

Solution

$$1595 = 1 \times 1218 + 377$$
$$1218 = 3 \times 377 + 87$$
$$377 = 4 \times 87 + 29$$
$$87 = 3 \times 29 + 0$$

and so

$$29 = 377 - 4 \times 87$$

$$= 377 - 4(1218 - 3 \times 377)$$

$$= 13 \times 377 - 4 \times 1218$$

$$= 13(1595 - 1218) - 4 \times 1218$$

$$= 13 \times 1595 - 17 \times 1218;$$

hence,

$$a = 13$$
 and $b = -17$.

9. Solve

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{2x}(1+y^2),\tag{5}$$

given that when x = 0, y = 1.

Express y in terms of x.

Solution

$$\frac{dy}{dx} = e^{2x}(1+y^2) \Rightarrow \frac{1}{1+y^2} dy = e^{2x} dx$$

$$\Rightarrow \int \frac{1}{1+y^2} dy = \int e^{2x} dx$$

$$\Rightarrow \arctan y = \frac{1}{2}e^{2x} + c.$$

Now,

$$x = 0, y = 1 \Rightarrow \frac{1}{4}\pi = \frac{1}{2} + c$$
$$\Rightarrow c = \frac{1}{4}\pi - \frac{1}{2}$$

and

$$\arctan y = \frac{1}{2}e^{2x} + \frac{1}{4}\pi - \frac{1}{2} \Rightarrow y = \tan(\frac{1}{2}e^{2x} + \frac{1}{4}\pi - \frac{1}{2}).$$

10. S_n is defined by

$$\sum_{r=1}^{n} \left(r^2 + \frac{1}{3}r \right).$$

(2)

(2)

(a) Find an expression for S_n , fully factorising your answer.

Solution

$$S_n = \sum_{r=1}^n \left(r^2 + \frac{1}{3}r\right)$$

$$= \sum_{r=1}^n r^2 + \frac{1}{3} \sum_{r=1}^n r$$

$$= \frac{1}{6}n(n+1)(2n+1) + \frac{1}{3} \cdot \frac{1}{2}n(n+1)$$

$$= \frac{1}{6}n(n+1)(2n+1) + \frac{1}{6}n(n+1)$$

$$= \frac{1}{6}n(n+1)[(2n+1)+1]$$

$$= \frac{1}{6}n(n+1)(2n+2)$$

$$= \frac{1}{3}n(n+1)^2.$$

(b) Hence find an expression for

$$\sum_{r=10}^{2p} \left(r^2 + \frac{1}{3}r \right),\,$$

where p > 5.

Solution

$$\sum_{r=10}^{2p} \left(r^2 + \frac{1}{3}r \right) = S_{2p} - S_9$$

$$= \frac{1}{3} (2p) [(2p) + 1]^2 - \frac{1}{3} (9) (9+1)^2$$

$$= \frac{2}{3} p (2p+1)^2 - 300.$$

(5) $y = x^{2x^3 + 1},$

$$y = x^{2x^3 + 1},$$

use logarithmic differentiation to find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

Write your answer in terms of x.

Solution

$$y = x^{2x^3+1} \Rightarrow \ln y = \ln x^{2x^3+1}$$
$$\Rightarrow \ln y = (2x^3+1)\ln x$$

$$u = 2x^{3} + 1 \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 6x^{2}$$
$$u = \ln x \Rightarrow \frac{\mathrm{d}v}{\mathrm{d}x} = \frac{1}{x}$$

$$\Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{2x^3 + 1}{x} + 6x^2 \ln x$$

$$\Rightarrow \frac{dy}{dx} = y \left(\frac{2x^3 + 1}{x} + 6x^2 \ln x \right)$$

$$\Rightarrow \frac{dy}{dx} = x^{2x^3 + 1} \left(\frac{2x^3 + 1}{x} + 6x^2 \ln x \right).$$

12. In the diagram below part of the graph of y = f(x) has been omitted. The point (-1, -2) lies on the graph and the line

$$y = \frac{1}{2}x - 3$$

is an asymptote.

Given that f(x) is an odd function:

(a) Copy and complete the diagram, including any asymptotes and any points you know (2)to be on the graph.

Solution		
----------	--	--

g(x) = |f(x)|.

(b) On a separate diagram, sketch g(x). Include known asymptotes and points.

Solution

Dr Oliver Mathematics

Dr Oliver Mathematics

(c) State the range of values of f'(x) given that f'(0) = 2.

(1)

Solution

Because f'(0) = 2, the line has gradient of 2 and that is the steepest part of the line (why?). Now, $f'(x) > \frac{1}{2}$ because of the asymptotes. So, $\frac{1}{2} < f'(x) \le 2$.

13. Let n be an integer.

(4)

Using proof by contrapositive, show that if n^2 is even, then n is even.

Solution

The contrapositive is: "if n is odd, then n^2 is odd." So, suppose n is odd. That

Dr Oliver Mathematics mean n = 2m + 1 for some integer m. Now,

$$n^{2} = (2m + 1)^{2}$$

$$= 4m^{2} + 4m + 1$$

$$= 2(2m^{2} + 2m) + 1$$

$$= 2 \times \text{some integer} + 1$$

and, clearly, n^2 is odd. The contrapositive is <u>true</u> which means that, if n^2 is even, then n is even.

14. Find the particular solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 6\frac{\mathrm{d}y}{\mathrm{d}x} + 9y = 8\sin x + 19\cos x,$$

(10)

given that y = 7 and $\frac{dy}{dx} = \frac{1}{2}$ when x = 0.

Solution

Complementary function:

$$m^{2} - 6m + 9 = 0 \Rightarrow (m - 3)^{2} = 0 \Rightarrow m = 3 \text{ (repeated)}$$

and hence the complementary function is

$$y = (Ax + B)e^{3x}.$$

Particular integral: try

$$y = C\cos x + D\sin x \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -C\sin x + D\cos x$$
$$\Rightarrow \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = -C\cos x - D\sin x.$$

Now,

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 6\frac{\mathrm{d}y}{\mathrm{d}x} + 9y = 8\sin x + 19\cos x$$

$$\Rightarrow (-C\cos x - D\sin x) - 6(-C\sin x + D\cos x) + 9(C\cos x + D\sin x)$$

$$= 8\sin x + 19\cos x$$

and

$$-D + 6C + 9D = 8 \Rightarrow 6C + 8D = 8 \quad (1)$$
$$-C - 6D + 9C = 19 \Rightarrow 8C - 6D = 19 \quad (2).$$

Next,

$$4 \times (1) : 24C + 32D = 32$$
 (3)

$$3 \times (2) : 24C - 18D = 57$$
 (4)

and (3) - (4):

$$50D = -25 \Rightarrow D = -\frac{1}{2}$$
$$\Rightarrow 6C - 4 = 8$$
$$\Rightarrow 6C = 12$$
$$\Rightarrow C = 2.$$

The particular integral is $y = 2\cos x - \frac{1}{2}\sin x$.

The general solution is

$$y = (Ax + B)e^{3x} + 2\cos x - \frac{1}{2}\sin x.$$

Now,

$$x = 0, y = 7 \Rightarrow 7 = B + 2$$
$$\Rightarrow B = 5.$$

Next,

$$y = (Ax + B)e^{3x} + 2\cos x - \frac{1}{2}\sin x$$

$$\Rightarrow y = Axe^{3x} + Be^{3x} + 2\cos x - \frac{1}{2}\sin x$$

$$\Rightarrow \frac{dy}{dx} = Ae^{3x} + 3Axe^{3x} + 3Be^{3x} - 2\sin x - \frac{1}{2}\cos x.$$

and

$$x = 0, \frac{dy}{dx} = \frac{1}{2} \Rightarrow \frac{1}{2} = A + 15 - \frac{1}{2}$$

 $\Rightarrow A = -14.$

Hence, the general solution is

$$y = (-14x + 5)e^{3x} + 2\cos x - \frac{1}{2}\sin x.$$

- 15. A beam of light passes through the points B(7,8,1) and T(-3,-22,6).
 - (a) Obtain parametric equations of the line representing the beam of light.

(2)

Solution

$$\overrightarrow{BT} = -10\mathbf{i} - 30\mathbf{j} + 5\mathbf{k} = -5(2\mathbf{i} + 6\mathbf{j} - \mathbf{k})$$

and the parametric equations of the line are

$$x = 2\lambda + 7, y = 6\lambda + 8, z = -\lambda + 1.$$

A sheet of metal is represented by a plane containing the points P(2,1,9), Q(1,2,7), and R(-3,7,1).

(b) Find the Cartesian equation of the plane.

(4)

Solution

$$\overrightarrow{PQ} = -\mathbf{i} + \mathbf{j} - 2\mathbf{k}$$

$$\overrightarrow{PR} = -5\mathbf{i} + 6\mathbf{j} - 8\mathbf{k}$$

and

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 1 & -2 \\ -5 & 6 & -8 \end{vmatrix}$$
$$= (-8 + 12)\mathbf{i} - (8 - 10)\mathbf{j} + (-6 + 5)\mathbf{k}$$
$$= 4\mathbf{i} + 2\mathbf{j} - \mathbf{k}.$$

Finally, the Cartesian equation of the plane is

$$4x + 2y - z = 8 + 2 - 9 \Rightarrow \underline{4x + 2y - z = 1}$$
.

The beam of light passes through a hole in the metal at point H.

(c) Find the coordinates of H.

(3)

Solution

$4(2\lambda + 7) + 2(6\lambda + 8) - (-\lambda + 1) = 1 \Rightarrow 21\lambda = -42$ $\Rightarrow \lambda = -2$ $\Rightarrow \underline{H(3, -4, 3)}.$

(5)

16. On a suitable domain, a curve is defined by the equation

$$4x^2 + 9y^2 = 36.$$

A section of the curve in the first quadrant, illustrated in the diagram below, is rotated 360° about the y-axis.

Calculate the exact value of the volume generated.

Solution

$$x = 0 \Rightarrow 9y^{2} = 36$$
$$\Rightarrow y^{2} = 4$$
$$\Rightarrow y = \pm 2.$$

Now,

$$4x^{2} + 9y^{2} = 36 \Rightarrow 4x^{2} = 36 - 9y^{2}$$

 $\Rightarrow x^{2} = 9 - \frac{9}{4}y^{2}$

and the exact value of the volume generated is

$$\int_0^2 \pi (9 - \frac{9}{4}y^2) \, dy = \pi \left[9y - \frac{3}{4}y^3 \right]_{y=0}^2$$
$$= \pi \left[(18 - 6) - (0 - 0) \right]$$
$$= \underline{12\pi}.$$

17. The complex number z = 2 + i is a root of the polynomial equation

$$z^4 - 6z^3 + 16z^2 - 22z + q = 0,$$

where $q \in \mathbb{R}$.

(a) State a second root of the equation.

(1)

Solution

$$z = 2 - i$$
.

(b) Find the value of q and the remaining roots.

(6)

Solution

×		-2	+i
z	z^2	-2z	+zi
-2	-2z	+4	-2i
_i	-zi	+2i	+1

$$[z - (2 - i)][z - (2 + i)] = z^2 - 4z + 5.$$

Let the remaining quadratic be

$$x^2 + ax + b$$

where $a, b \in \mathbb{R}$.

×	$ z^2 $	-4z	+5
z^2	z^4	$-4z^3$	$+5z^2$
+az	$+az^3$	$-4az^2$	+5az
+b	$+bz^2$	-4bz	+5b

Now,

$$z^4 - 6z^3 + 16z^2 - 22z + q = z^4 + (-4 + a)z^3 + (5 - 4a + b)z^2 + (5a - 4b)z + 5b.$$

Coefficient of z^3 : $-4 + a = -6 \Rightarrow a = -2$.

Coefficient of z^2 : $5+8+b=16 \Rightarrow b=3$.

Check in z: 5a - 4b = 22 \checkmark

Hence, the value of q is

$$5 \times 3 = \underline{15}$$

and the remaining roots are

$$z^{2} - 2z + 3 = 0 \Rightarrow z^{2} - 2z + 1 = -2$$
$$\Rightarrow (z - 1)^{2} = -2$$
$$\Rightarrow z - 1 = \pm i\sqrt{2}$$
$$\Rightarrow \underline{z = 1 \pm i\sqrt{2}}.$$

(c) Show the solutions to

$$z^4 - 6z^3 + 16z^2 - 22z + q = 0$$

(1)

on an Argand diagram.

18. The position of a particle at time t is given by the parametric equations

$$x = t \cos t, y = t \sin t, t \ge 0.$$

(a) Find an expression for the instantaneous speed of the particle.

Solution

$$x = t \cos t \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = \cos t - t \sin t$$
$$y = t \sin t \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}t} = \sin t + t \cos t.$$

(5)

Now,

$$\operatorname{speed} = \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2}$$

$$= \sqrt{\left(\cos t - t\sin t\right)^2 + \left(\sin t + t\cos t\right)^2}$$

$$= \sqrt{\left(\cos^2 t - 2t\sin t\cos t + t^2\sin^2 t\right) + \left(\sin^2 t - 2t\sin t\cos t + t^2\cos^2 t\right)}$$

$$= \sqrt{\sin^2 + \cos^2 t + t^2(\sin^2 t + \cos^2 t)}$$

$$= \sqrt{1 + t^2}.$$

The diagram below shows the path that the particle takes.

(b) Calculate the instantaneous speed of the particle at point A.

(2)

Solution

 $t=3\pi$ (it has gone $1\frac{1}{2}$ times around) and

speed =
$$\sqrt{1 + (3t)^2}$$
.

20