Dr Oliver Mathematics Second Order Differential Equations: Part 1

1. If

$$f''(x) - f'(x) - 2f(x) = 0$$
 with $f(0) = 2$ and $f'(0) = -2$,

evaluate f(1).

Solution

Complementary Function:

$$m^2 - m - 2 \Rightarrow (m-2)(m+1) = 0$$

 $\Rightarrow m = -1 \text{ or } m = 2.$

So

$$f(x) = Ae^{-x} + Be^{2x}$$

for some constants A and B. Now,

$$f(x) = Ae^{-x} + Be^{2x} \Rightarrow f'(x) = -Ae^{-x} + 2Be^{2x}.$$

Next,

$$f(0) = 2 \Rightarrow A + B = 2 \quad (1)$$

and

$$f'(0) = -2 \Rightarrow -A + 2B = -2$$
 (2).

Add (1) + (2):

$$3B = 0 \Rightarrow B = 0$$
$$\Rightarrow A = 2$$

and hence

$$f(x) = 2e^{-x}.$$

Finally,

$$f(1) = \underline{\underline{2}e^{-1}}.$$