Dr Oliver Mathematics AQA Further Maths Level 2
 June 2021 Paper 2
 2 hours

The total number of marks available is 80 .
You must write down all the stages in your working.
You are permitted to use a scientific or graphical calculator in this paper.

1. Expand and simplify

$$
5(2 x-1)+4(11-x)
$$

Give your answer in the form

$$
a(b x+c)
$$

where a, b, and c are integers greater than 1
2. $5 m$ is decreased by 40%.

The answer is $(m+1)$.
(a) Work out the value of m.
(b) Solve

$$
\begin{equation*}
\sqrt[3]{2 w-10}=18 \tag{2}
\end{equation*}
$$

3. The rectangle and triangle shown have equal areas.

Work out the value of

$$
\frac{d}{e}
$$

Give your answer in its simplest form.
4. The equations of the two circles shown are

$$
\begin{equation*}
x^{2}+y^{2}=100 \text { and } x^{2}+y^{2}=36 . \tag{3}
\end{equation*}
$$

Work out the shaded area.
Give your answer as an integer multiple of $p i$.
5. $S Q R$ is a right-angled triangle.

- P is a point on $S Q$.
- Angle $S P R=45^{\circ}$.
- M is the midpoint of $Q R$.
- k is a constant.

Work out the coordinates of M.
6. Rearrange

$$
\begin{equation*}
y=\sqrt{\frac{x+2 w}{3}} \tag{3}
\end{equation*}
$$

to make w the subject.
7. a is a value greater than 1 .
(a) Work out the value of m for which

$$
\begin{gather*}
\left(a^{m}\right)^{4}=\left(a^{5}\right)^{2 m} \tag{2}\\
w^{3} x^{2} y^{5}=w^{13} x^{7} \tag{2}
\end{gather*}
$$

(b) Write y in terms of w and x. Give your answer in its simplest form.
8. A function f is given by

$$
\mathrm{f}(x)= \begin{cases}4 x, & x<0 \tag{4}\\ x^{2}-8 x, & 0 \leqslant x \leqslant 8 \\ 16-2 x, & x>8\end{cases}
$$

A sketch of $y=\mathrm{f}(x)$ is shown.

Work out all the values of x for which

$$
\mathrm{f}(x)=-12
$$

9. (a) Circle the expression that is equivalent to

$$
\begin{gather*}
\frac{1}{a}+\frac{1}{b}: \tag{1}\\
\frac{2}{a+b}
\end{gather*} \frac{a b}{b+a} \quad \frac{2}{a b} \quad \frac{b+a}{a b} .
$$

(b) Simplify fully

$$
\begin{equation*}
\frac{6 c^{4}-c^{3}}{36 c^{2}-1} \tag{3}
\end{equation*}
$$

10. The radius of a sphere, in cm , is $\frac{3}{2} k$.

The volume of the sphere, in cm^{3}, is 972π.

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \quad \text { where } r \text { is the radius }
$$

Work out the value of k.
11. Expand and simplify fully
Dr Oliver

$$
\left(5 x+3 y^{2}\right)\left(4 x-y^{2}\right)
$$

12. A and B are points on the line

$$
\begin{equation*}
y=3 x+2 \tag{5}
\end{equation*}
$$

- B, C, and $D(5,0)$ are points on the line L .
- $O A: A C=1: 4$.

Not drawn accurately

Work out the x-coordinate of B.
13. P is the point on the curve

$$
y=a x^{3}+10 x^{2}
$$

where $x=2$.
The gradient of the normal to the curve at P is $-\frac{1}{4}$.
Work out the value of a.
14.

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(a) Describe geometrically the single transformation represented by \mathbf{A}.

$$
\mathbf{B}=\left(\begin{array}{cc}
0 & 1 \tag{1}\\
-1 & 0
\end{array}\right)
$$

(b) Describe geometrically the single transformation represented by \mathbf{B}^{2}.
15. A, B, and C are points on a circle, centre O.

- $A C D$ is a straight line.
- Angle $B C D=w$.

Not drawn
accurately

Prove that

$$
w=x+90^{\circ} .
$$

16. The coefficient of x^{4} in the expansion of

$$
\begin{equation*}
(a+2 x)^{6} \tag{3}
\end{equation*}
$$

is 1500 .
Work out the two possible values of a.
17. $A B C D E F G H$ is a cube with side length 32 cm . M and N are points on $D H$ and $C G$ respectively.

Work out the size of the angle that the line $B M$ makes with the plane $A B C D$.
18.

$$
\begin{equation*}
y=12 x+\frac{3}{x} . \tag{5}
\end{equation*}
$$

Show that y has a minimum value when $x=0.5$.
19.

$$
\mathrm{f}(x)=(x+2)^{3}
$$

g is a function such that

$$
\begin{equation*}
\mathrm{gf}(x)=(x+2)^{12} \tag{1}
\end{equation*}
$$

(a) Work out an expression for $\mathrm{g}(x)$.

$$
\mathrm{h}(x)=x^{2}+5 .
$$

m is a function such that

$$
\begin{equation*}
\mathrm{h} \mathrm{~m}(x)=4 x^{2}+5 \tag{2}
\end{equation*}
$$

(b) Work out an expression for $\mathrm{mh}(x)$.
20. Show that
can be written in the form

$$
\begin{equation*}
\frac{2 \sin x+\cos x}{\tan x}-\frac{1}{\sin x} \tag{4}
\end{equation*}
$$

$$
a \cos x+b \sin x
$$

where a and b are integers.
21.

$$
3 x^{2}+2 b x+8 a
$$

can be written in the form

$$
3(x+a)^{2}+b+2 .
$$

Work out the two possible pairs of values of a and b.

