Dr Oliver Mathematics Proportion: Part 1

1. When t = 2, N = 300.

Gail thinks that N is directly proportional to the square of t. She finds a formula for N in terms of t.

(a) Work out the value of N when t = 4 using Gail's formula.

Solution
$N \propto t^2 \Rightarrow N = kt^2$
for some constant k . Now,
$300 = k \cdot 2^2 \Rightarrow k = 75$
and
$N = 75t^2.$
Finally, $N = 75 \cdot 4^2 = \underline{1200}.$

Megan thinks that Gail is wrong. She thinks that the formula

$$N = 75 \times 2^t$$

should be used.

When t = 6, N = 4800.

(b) Showing your working clearly, find out which formula fits these values.

Solution		
Gail:	$\mathbf{N} = \mathbf{c}^2 + \mathbf{c}^2 \mathbf{c}$	
N.	$N = 75 \cdot 6^2 = 2700.$	
<u>Megan</u> :	$N = 75 \cdot 2^6 = 4800.$	
So, $\underline{\text{Megan is right}}$.		

(4)

(2)