Dr Oliver Mathematics Worked Examples Quadratic Equation 2

From: CCEA 2019 January M4 Paper 1 (Calculator)

1. A method of trial and improvement will not be accepted.

(8)

A is a fraction whose denominator is 3 more than its numerator.

A new fraction B is produced.

4 is added to the numerator of A to give the numerator of B.

4 is added to the denominator of A to give the denominator of B.

Fraction B is now larger than fraction A by $\frac{1}{8}$.

By setting up and solving a suitable equation find the original fraction A.

Solution

"A is a fraction whose denominator is 3 more than its numerator" so let the fraction

$$A = \frac{x}{x+3}.$$

For B, the numerator is

$$x+4$$

the denominator is

$$(x+3)+4=x+7,$$

and, hence,

$$B = \frac{x+4}{x+7}.$$

Now, "fraction B is now larger than fraction A by $\frac{1}{8}$ " and so

$$\frac{x+4}{x+7} - \frac{x}{x+3} = \frac{1}{8}$$

multiply by 8(x+3)(x+7):

$$\Rightarrow \frac{x+4}{x+7} \times 8(x+3)(x+7) - \frac{x}{x+3} \times 8(x+3)(x+7) = \frac{1}{8} \times 8(x+3)(x+7)$$

$$\Rightarrow$$
 8(x+3)(x+4) - 8x(x+7) = (x+3)(x+7)

Dr Oliver

×		+3
$\begin{array}{c} x \\ +4 \end{array}$	$\begin{vmatrix} x^2 \\ +4x \end{vmatrix}$	+3x $+12$

$$\begin{array}{c|ccc} \times & x & +3 \\ \hline x & x^2 & +3x \\ +7 & +7x & +21 \end{array}$$

$$\Rightarrow 8(x^2 + 7x + 12) - 8x(x + 7) = x^2 + 10x + 21$$

$$\Rightarrow 8x^2 + 56x + 96 - 8x^2 - 56x = x^2 + 10x + 21$$

simplify the terms on the LHS:

$$\Rightarrow 96 = x^2 + 10x + 21$$
$$\Rightarrow 0 = x^2 + 10x - 75$$

add to:
$$+10$$
 multiply to: -75 $+15, -5$

$$\Rightarrow 0 = (x+15)(x-5)$$
$$\Rightarrow x = -15 \text{ or } x = 5.$$

If x = -15,

$$A = \frac{-15}{-15+3} = \frac{-15}{-12} = \frac{5}{4}$$

and

$$B = \frac{9}{8};$$

if x = 5,

$$A = \frac{5}{8}$$

and

$$B = \frac{9}{12} = \frac{3}{4}.$$

Which is it? Well,

$$\frac{9}{8} - \frac{5}{4} = \frac{9}{8} - \frac{10}{8} = -\frac{1}{8},$$

Dr Oliver

which fails the test ("Fraction B is now larger than fraction A by $\frac{1}{8}$ "). Next,

$$\frac{3}{4} - \frac{5}{8} = \frac{6}{8} - \frac{5}{8} = \frac{1}{8},$$

which passes the test.

Hence, the the original fraction A is

$$\underline{A = \frac{5}{8}}.$$

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics