Dr Oliver Mathematics Mathematics: Higher 2009 Paper 2: Calculator
 1 hour 10 minutes

The total number of marks available is 60 .
You must write down all the stages in your working.

1. Find the coordinates of the turning points of the curve with equation

$$
\begin{equation*}
y=x^{3}-3 x^{2}-9 x+12 \tag{8}
\end{equation*}
$$

and determine their nature.
2. Functions f and g are given by

$$
\begin{equation*}
\mathrm{f}(x)=3 x+1 \text { and } \mathrm{g}(x)=x^{2}-2 . \tag{3}
\end{equation*}
$$

(a) (i) Find $\mathrm{p}(x)$ where $\mathrm{p}(x)=\mathrm{f}(\mathrm{g}(x))$.
(ii) Find $\mathrm{q}(x)$ where $\mathrm{q}(x)=\mathrm{g}(\mathrm{f}(x))$.
(b) Solve

$$
\begin{equation*}
\mathrm{p}^{\prime}(x)=\mathrm{q}^{\prime}(x) . \tag{3}
\end{equation*}
$$

3. (a) (i) Show that $x=1$ is a root of

$$
\begin{equation*}
x^{3}+8 x^{2}+11 x-20=0 . \tag{4}
\end{equation*}
$$

(ii) Hence factorise

$$
x^{3}+8 x^{2}+11 x-20
$$

fully.
(b) Solve

$$
\begin{equation*}
\log _{2}(x+3)+\log _{2}\left(x^{2}+5 x-4\right)=3 . \tag{5}
\end{equation*}
$$

4. (a) Show that the point $P(5,10)$ lies on circle C_{1} with equation

$$
\begin{equation*}
(x+1)^{2}+(y-2)^{2}=100 \tag{1}
\end{equation*}
$$

$P Q$ is a diameter of this circle as shown in the diagram.

(b) Find the equation of the tangent at Q.

Two circles, C_{2} and C_{3}, touch circle C_{1} at Q.
The radius of each of these circles is twice the radius of circle C_{1}.
(c) Find the equations of circles C_{2} and C_{3}.
5. The graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ are shown in the diagram.

$\mathrm{f}(x)=-4 \cos (2 x)+3$ and $\mathrm{g}(x)$ is of the form $\mathrm{g}(x)=m \cos (n x)$.
(a) Write down the values of m and n.
(b) Find, correct to one decimal place, the coordinates of the points of intersection of the two graphs in the interval $0 \leqslant x \leqslant \pi$.
(c) Calculate the shaded area.
6. The size of the human population, N, can be modelled using the equation

$$
N=N_{0} \mathrm{e}^{r t}
$$

where N_{0} is the population in $2006, t$ is the time in years since 2006 , and r is the annual rate of increase in the population.
(a) In 2006 the population of the United Kingdom was approximately 61 million, with an annual rate of increase of 1.6%. Assuming this growth rate remains constant, what would be the population in 2020 ?

In 2006 the population of Scotland was approximately 5.1 million, with an annual rate of increase of 0.43%.
(b) Assuming this growth rate remains constant, how long would it take for Scotland's population to double in size?
7. Vectors \mathbf{p}, \mathbf{q}, and \mathbf{r} are represented on the diagram shown where angle $A D C=30^{\circ}$.

It is also given that $|\mathbf{p}|=4$ and $|\mathbf{q}|=3$.
(a) Evaluate

$$
\begin{equation*}
\mathbf{p} \cdot(\mathbf{q}+\mathbf{r}) \text { and } \mathbf{r} \cdot(\mathbf{p}-\mathbf{q}) . \tag{6}
\end{equation*}
$$

(b) Find

$$
\begin{equation*}
|\mathbf{q}+\mathbf{r}| \text { and }|\mathbf{p}-\mathbf{q}| . \tag{4}
\end{equation*}
$$

